| 研究生: |
沈明成 Shen, Ming-Cheng |
|---|---|
| 論文名稱: |
氧化鎵基紫外光光檢測器之研究 Investigation of Ga2O3-based ultraviolet photodetectors |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 低溫氣相冷凝系統 、氧化鎵 、氧化銦鎵 、氧化鋁鎵 、金屬-半導體-金屬紫外光光檢測器 |
| 外文關鍵詞: | Vapor cooling condensation system, Ga2O3, (InyGa1-y)2O3, (AlyGa1-y)2O3, MSM DUV-PDs |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用創新設計之低溫氣相冷凝系統(vapor cooling condensation system)製備高品質低缺陷的氧化鎵薄膜,並將氧化鎵分別與氧化銦與氧化鋁進行共蒸鍍,進而形成氧化銦鎵((InyGa1-y)2O3)與氧化鋁鎵((AlxGa1-x)2O3)薄膜,藉由微量摻入銦與鋁調變氧化鎵薄膜調變其薄膜光學能隙,氧化鎵薄膜光學能隙值為4.96 eV,氧化銦鎵薄膜的銦含量經由能量分散式光譜儀(EDS)量測為3.74%與7.49%時,氧化銦鎵薄膜為(In0.09Ga0.91)2O3與(In0.18Ga0.82)2O3,薄膜光學能隙值為 4.76 eV與4.59 eV,氧化鋁鎵薄膜的鋁含量經由能量分散式光譜儀量測為3.31%與6.64%時,氧化鋁鎵薄膜為(Al0.08Ga0.92)2O3與(Al0.16Ga0.84)2O3,薄膜光學能隙值為5.17 eV與5.39 eV,並將其薄膜應用於金屬-半導體-金屬光檢測器。
本研究將分析氧化鎵、氧化銦鎵與氧化鋁鎵之金屬-半導體-金屬光檢測器元件特性,氧化鎵元件在波段250 nm時具有最高光響應度,元件紫外光/可見光拒斥比達到1.32×104,元件檢測度達到9.44×1012 cmHz1/2W-1,氧化銦鎵為(In0.09Ga0.91)2O3時,元件於波段260 nm時具有最高光響應度,元件紫外光/可見光拒斥比達到4.34×103,元件檢測度達到5.36×1012 cmHz1/2W-1,氧化銦鎵為(In0.18Ga0.82)2O3時,元件於波段270 nm時具有最高光響應度,元件紫外光/可見光拒斥比達到3.21×10^3,元件檢測度達到3.07×1012 cmHz1/2W-1,氧化鋁鎵為(Al0.08Ga0.92)2O3時,元件於波段240 nm時具有最高光響應度,元件紫外光/可見光拒斥比達到7.61×103,元件檢測度達到2.86×1012 cmHz1/2W-1,氧化鋁鎵為(Al0.16Ga0.84)2O3時,元件於波段230 nm時具有最高光響應度,元件紫外光/可見光拒斥比達到3.66×103,元件檢測度達到2.32×1012 cmHz1/2W-1,本研究證實可製作出高檢測度並可調變檢測波段之深紫外光光檢測器,元件紫外光/可見光拒斥均可達到10^3量級以上,元件檢測度均可達到10^12 cmHz1/2W-1。
In this study, the Ga2O3 film was deposited on the sapphire substrate by using vapor cooling condensation system. The Ga2O3 film was applied to MSM DUV-PDs as the active layers. The dark current and ultraviolet-visible rejection ratio of were achieved to 51.1 pA and 1.3 × 104 at a bias voltage of 5 V.
In addition, the different concentration In doped Ga2O3 thin films were grown by vapor cooling condensation system. Modulating the optical bandgap red shifted of thin film with doping In. Moreover, the peak of photoresponsivity was shifted from 250 nm to 270 nm by doping with In. The In content in the (InyGa1-y)2O3 films was 0.09 and 0.18 by utilizing the energy dispersive spectrometer (EDS), respectively. The UV-visible rejection ratios were higher than three orders of magnitude and excellent detectivity was observed for the Ga2O3-based MSM DUV-PDs.
Moreover, the different concentration Al doped Ga2O3 thin films were grown by vapor cooling condensation system. Tuning the optical bandgap blue shifted of thin film with doping Al. Moreover, the peak of photoresponsivity was shifted from 230 nm to 250 nm by doping with Al. The Al content in the (AlxGa1-x)2O3 films was 0.08 and 0.16 by using the energy dispersive spectrometer (EDS), respectively. The UV-visible rejection ratios were higher than three orders of magnitude and outstanding detectivity was Confirmed for the Ga2O3-based MSM DUV-PDs.
第一章
[1] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors”, IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.
[2] L. X. Qian, H. F. Zhang, Z. H. Wu, and X. Z. Liu, “High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate”, Opt. Mater. Express, vol. 7, pp. 3643-3653, 2017.
[3] M. A. Mastro, A. Kuramata, and J. Calkins, “Perspective-opportunities and future directions for Ga2O3”, ECS J. Solid State Sci. Technol., vol. 6, pp. 356-359, 2017.
[4] L. Kong, J. Ma, and C. Luan, “Structural and optical properties of heteroepitaxial beta Ga2O3 films grown on MgO (100) substrates”, Thin Solid Films, vol. 520, pp. 4270-4274, 2012
[5] S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films”, J. Phys. Chem. C, vol.117, pp. 4194-4200, 2013.
[6] Y. Chen, H. Liang, X. Xia, R. Shen, Y. Liu, Y. Luo, and G. Du, “Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (100) substrates by MOCVD method”, Appl. Surf. Sci., vol. 325, pp. 258-261, 2015.
[7] W. Mi, J. Ma, Z. Li, C. N. Luan, and H. D. Xiao, “Characterization of Sn-doped β-Ga2O3 films deposited on MgO (100) substrate by MOCVD”, J. Mater. Sci.-Mater. Electron., vol. 26, pp. 7889-7894, 2015.
[8] F. Alema, B. Hertog, A. Osinsky, P. Mukhopadhyay, M. Toporkov, and W. V. Schoenfeld, “Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD”, J. Cryst. Growth, vol. 475, pp. 77-82, 2017.
[9] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S.Yamakoshi, “MBE grown Ga2O3 and its power device applications”, J. Cryst. Growth, vol. 378, pp. 591-595, 2013.
[10] Y. C. Chang, Y. J. Lee, Y. N. Chiu, T. D. Lin, S. Y. Wu, H. C. Chiu, J. Kwo, Y. H. Wang, and M. Hong, “MBE grown high κ dielectrics Ga2O3(Gd2O3) on GaN. journal of crystal growth”, J. Cryst. Growth, vol. 301-302, pp. 390-393, 2007.
[11] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology”, Opt. Mater. Express, vol. 4, pp. 1067-1076, 2014.
[12] Q. Feng, F. Li, B. Dai, Z. Jia, W. Xie, T. Xu, X. Lu, X. Tao, J. Zhang, and Y. Hao, “The properties of gallium oxide thin film grown by pulsed laser deposition”, Appl. Surf. Sci, vol. 359, pp. 847-852, 2015.
[13] F. Zhang, M. Arita, X. Wang, Z. chen, K. Saito, T. Tanaka, M. Nishio, T. Motooka, and Q. Guo, “Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition”, Appl. Phys. Lett, vol. 109, pp. 100-104, 2016.
[14] Q. Guo, K. Nishihagi, Z. Chen, K. Saito, and T. Tannka, “Characteristics of thulium doped gallium oxide films grown by pulsed laser deposition”, Thin Solid Films, vol. 639, pp. 123-126, 2017.
[15] J. H. Kim and P. H. Holloway, “Microstructural characterization of radio frequency magnetron sputter-deposited Ga2O3:Mn phosphor thin films”, J. Vac. Sci. Technol. A, vol. 20, pp. 928-933, 2002.
[16] K. H. Choi and H. C. Kang, “Structural and optical evolution of Ga2O3/glass thin films deposited by radio frequency magnetron sputtering”, Mater. Lett., vol. 123, pp. 160-164, 2014.
[17] F. K. Shan, G. X. Liu, W. J. Lee , G. H. Lee , I. S. Kim , and B. C. Shin, “Ga2O3 thin film deposited by atomic layer deposition with high plasma power”, Integr. Ferroelectr., vol. 80, pp. 197-206, 2006
[18] R. K. Ramachandran, J. Dendooven, J. Botterman, S. P. Sree, D. Poelman, J. A. Martens, H. Poelmand, and C. Detavernier, “Plasma enhanced atomic layer deposition of Ga2O3 thin films”, J. Mater. Chem. A, vol. 2, pp. 19232-19238, 2014
[19] S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films”, ACS Photonics, vol. 4, pp. 2937-2943,2017
[20] M. Haneda, Y. kintaichi, T. Mizushima, N. Kakuta, and H. Hamada, “Structure of Ga2O3-Al2O3 prepared by sol–gel method and its catalytic performance for NO reduction by propene in the presence of oxygen”, Appl. Catal. B-Environ, vol. 31, pp. 81-92, 2001.
[21] L. Yu and H. Liu, “Photoluminescent properties of Dy3+ in MgO-Ga2O3-SiO2 nano-glass-ceramic prepared by sol-gel method”, Physica B, vol. 406, pp. 3101-3103, 2011.
[22] H. J. Lee, W Joe, J. C. Jung, and I. K. Song, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3-CeO2-ZrO2 catalysts prepared by a single-step sol-gel method: effect of acidity and basicity of the catalysts”, Korean J. Chem. Eng, vol. 29, pp. 1019-1024, 2012.
[23] F. B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q.X. Guo, “Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition”, J. Cryst. Growth, vol. 387, pp. 96-100, 2014.
[24] W. Mi, J. Ma, C. Luan, and H. Xiao, “Structural and optical properties of β-Ga2O3 films deposited on MgAl2O4 (100) substrates by metal-organic chemical vapor deposition”, J. Lumines., vol. 146, pp. 1-5, 2014.
[25] I. Donmez, C. Ozgit-Akgun, and N. Biyikli, “Low temperature deposition of Ga2O3 thin films using trimethylgallium and oxygen plasma”, J. Vac. Sci. Technol. A, vol. 31, pp. 01A110-1-01A110-4, 2013
[26] E. Monroy, F. Calle, F J Sanchez, J. A. Munoz, E. Muñoz, E. Calleja, B. Beaumont, F. Cusso, and P. Gibart, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., vol. 13, pp. 1042-1046, 1998.
[27] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study”, J. Appl. Phys., vol. 101, pp. 114508-1-114508-5, 2007.
[28] S. Singh and S. H. Park, “Fabrication and characterization of Al:ZnO based MSM ultraviolet photodetectors,” Superlattices Microstruct., vol. 86, pp. 412-417, 2015.
[29] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar and M. Asif Khan, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
[30] L. Li, Y. Ryu, H. W. White and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate”, Proc. SPIE., vol. 7603, pp. 760310-1-760310-8, 2010.
[31] M. D. Hammig, X. J. Chen, J. C. Campbell, T. Kang, W. Sun, E. B. Johnson, K. Lee, and J. F. Christian, “Development of Al0.8Ga0.2As photodiodes for use in wide band-gap solid-state photomultipliers”, IEEE Trans. Nucl. Sci., vol. 60, pp. 1175-1181, 2013.
[32] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “MgxZn1−xO-based photodetectors covering the whole solar-blind spectrum range”, Appl. Phys. Lett., vol 93, pp. 173505-1-103505-3, 2008.
[33] V. Kuryatkov, A. Chandolu, B. Borisov, G. Kipshidze, K. Zhu, S. Nikishin, H. Temkin, and M. Holtz, “Solar-blind ultraviolet photodetectors based on superlattices of AlN/AlGa(In)N”, Appl. Phys. Lett., vol 82, pp. 1323-1325, 2003.
[34] S. Ahn, Y. H. Lin, F. Ren, S. Oh, Y. Jung, G. Yang, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, Jr., and S. J. Pearton, “Effect of 5 MeV proton irradiation damage on performance of β-Ga2O3 photodetectors”, J. Vac. Sci. Technol. B, vol. 34, pp. 041213-1-041213-5, 2016.
[35] M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, “High-performance single crystalline UV photodetectors of -Ga2O3”, J. Alloy. Compd, vol. 619, pp. 572-575, 2015.
[36] F. Alema, B. Hertog, O. Ledyaev, D. Volovik, R. Miller, A. Osinsky, S. Bakhshi, and W. V. Schoenfeld, “High responsivity solar blind photodetector based on high Mg content MgZnO film grown via pulsed metal organic chemical vapor deposition”, Sens. Actuator A-Phys., vol. 249, pp. 263-268, 2016.
[37] W. Zhang, J. X. Wei, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, “High-performance AlGaN metal-semiconductor-metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement”, Appl. Phys. Lett., vol. 106, pp. 021112-1-021112-5, 2015.
[38] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors.” Appl. Phys. Lett., vol. 90, pp. 031912(1)-031912(3), 2007.
[39] D. Liu, S. J. Clark, and J. Robertson, “Oxygen vacancy levels and electron transport in Al2O3,”Appl. Phys. Lett., vol. 96, pp. 032905-032905(3), 2010.
[40] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.
[41] C. T. Lee, T. S. Lin, and H. Y. Lee, “Mechanisms of low noise and high detectivity of p-GaN/i-ZnO/n-ZnO:Al-heterostructured ultraviolet photodetectors”, IEEE Photonics Technol. Lett, vol. 22, pp. 1117-1119, 2010.
[42] H. Y. Lee, C. T. Lee and J. T. Yan, “Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes”, Appl. Phys. Lett., vol. 97, 111111-1-111111-3, 2010.
[43] S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of n-type -Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition”, Appl. Phys. Lett., vol. 109, pp. 132103-1-132103-5, 2016.
第二章
[1] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.
[2] S. M. Sze, “Semiconductor device physics and technology 2nd edition”, Wiley, chap. 7.1, 2001.
[3] S. M. Sze, “Semiconductor device physics and technology 2nd edition”, Wiley, chap. 7.1.3, 2001.
[4] S. M. Sze, “Semiconductor device physics and technology 2nd edition”, Wiley, chap. 7.1.2, 2001.
[5] G. W. Neudeck, “The p-n junction diode”, Addison-Wesley, Reading MA, p. 135, 1989.
[6] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor devices modeling for VLSI”, Prentice Hall, 1997.
[7] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures”, Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
[8] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor devices modeling for VLSI”, Prentice Hall, New Jersey, 1997.
[9] J. M. Liu, “Photonic devices 2nd edition,” Cambridge University Press, chap.7, 2005.
[10] S. M. Sze, “Semiconductor device physics and technology 2nd edition,” Wiley, chap.9.1, 2001.
[11] K. K. Bharathi, N. R. Kalidindi, and C. V. Ramana, “Grain size and strain effects on optical and electrical properties of hafnium oxide nanocrystalline thin film”, J. Appl. Phys., vol.108, pp. 083529-1-083529-5, 2010.
[12] S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films”, J. Phys. Chem. C, vol.117, pp. 4194-4200, 2013.
[13] R. H. Yuang and J. I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, Electronics Letters, Vol.32, pp.131, 1996
[14] S. V. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures”, Solid-State Electronics, vol.45, pp. 441-446, 2001.
[15] L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts”, Nanoscale, vol. 3, pp. 1120-1126, 2011.
[16] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor- metal photodetectors for long wavelength optical communications”, IEEE J. Quant. Electron., vol. 27, pp. 737-752, 1991.
[17] L. C. Chen, M. S. Fu, and I. L. Huang, “Metal-semiconductor-metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition”, Jpn. J. Appl. Phys., vol. 43, pp. 3353-3355, 2004.
[18] P. Wang, Z. Song, J. He, X. Guo, Y. Wang, L. Qiu, L. Guo, and Y. Yang, “Effects of internal gain and illumination-induced stored charges in MgZnO metal-semiconductor-metal photodetectors”, IEEE Trans. Electron Devices, vol. 63, pp. 1600-1607, 2016.
[19] S. F. Soares, ”Photoconductive gain in a Schottky barrier photodiode”, Jpn. J. Appl. Phys., vol. 31, pp. 210-216, 1992.
[20] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
[21] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN”, J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
[22] F. N. Hooge, “1/f noise sources”, IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
[23] X. S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A. R. Arehart, J. S. Speck, S. A. Ringel, E. A. Fitzgerald, and S. J. Chua, “Correlation of a generation-recombination center with a deep level trap in GaN”, Appl. Phys. Lett., vol. 101, pp. 102101-1-102101-5, 2015.
[24] A. A. Balandin, “Noise and fluctuations control in electronics devices”, America Scientific Publishers, USA, p.163, 2002.
[25] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors”, IEEE Photonics Technol. Lett., vol. 25, pp. 348-351, 2013.
第四章
[1] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Apply. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
[2] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors”, Apply. Phys. Lett., vol. 105, pp. 023507-1-023507-5, 2014.
[3] D. Zhang, W. Zheng, R. C. Lin, T. T. Li, Z. J. Zhang, and F. Huang, “High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed”, J. Alloy. Compd., vol. 735, pp. 150-154, 2018.
[4] X. H. Chen, S. Han, Y. M. Lu, P. J. Cao, W. J. Liu, Y. X. Zeng, F. Jia, W. Y. Xu, X. K. Liu, and D. L. Zhu, “High signal/ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and (2 ̅00) orientation β-Ga2O3 deposited by the PLD method”, Opt. Mater. Express, vol. 5, pp. 1240-1249, 2015.
[5] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors”, IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.
[6] S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films”, J. Am. Chem. Soc., vol. 4, pp. 2937-2943, 2017.
校內:2023-08-28公開