| 研究生: |
謝建億 Hsieh, Chien-I |
|---|---|
| 論文名稱: |
全跨預鑄預力混凝土高架橋之維護研究 Maintenance of Precast Prestressed Concrete Segmental Bridge |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 墩柱 、箱梁 、預力損失 、載重試驗 、橋梁維護 |
| 外文關鍵詞: | prestress losses, pier-column, box-girder, laod test of bridge, maintenance of bridge |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討預力預鑄節塊墩柱及箱梁在施完預力後之長期混凝土應變變化及相關預力損失,並依其應變變化訂定相關的維護管理值。
本研究以高雄港聯外道路高架橋新生路北段第四單元(U4)為例,延續預鑄墩柱及箱梁節塊的長期應變監測,配合靜態載重試驗監測變形行為與推估有效預力,進而與設計值比對。
靜態載重試驗結果中,箱梁在最大負彎矩載重試驗的最大撓度為2~3mm,邊跨為3.68~5mm,在最大正彎矩載重試驗的最大撓度為3~5mm,邊跨為4~5mm。量測值小於用SAP的分析值,兩者有合理的對應關係。經由最大負彎矩試驗所量測的墩柱軸向應變值與依據施拉預力時所推估之彈性模數預測值,兩者之比為0.98,顯示墩柱之混凝土彈性模數值自施拉預力至載重試驗並未顯著改變。
根據預力損失評估,P13~P16墩柱在施拉預力後1500天的預力損失為1350kgf/cm2,約為初始預力的9.47%,目前的有效預力高於設計值(行動值)10000kgf/cm2。B14跨箱梁在施拉預力後1300天的內置預力損失為1110~1900 kgf/cm2,約為初始預力的7.71%~12.03%;外置預力損失為1309kgf/cm2,約為起始預力的9.12 %,目前的有效預力高於設計值(行動值)11570kgf/cm2。
Prestressed concrete is usually used for bridge structures, and the prediction of prestress losses is one of the main factors considered in the design of bridge. This thesis aims at studying the long-term change and prestress losses of post-tensioning precast segmental pier column and box-girder after prestressing. In experimental study, the long-term strain of box girder and pier column in the 5-span continuous bridge of Unit 4 of Kaohsiung Port Viaduct was monitored and compared with design code.
In the load test results, the maximum deflection of the box-girder under the maximum negative moment load test is 2~3mm, and the side span is 3.68 ~ 5mm, while the maximum deflection at the maximum positive moment load test is 3~5mm, and the side span is 4~5mm. The measured values are less than the analytical values of SAP2000, both have reasonable correlation. The averaged ratios of the axial strains of the pier column measured based on the maximum negative moment tests to the predicted value of the Ec at the time of the prestressing is 0.98, which shows that the concrete Ec value of the pier column from prestressing to load test did not change significantly.
In the evaluation of pretress losses, the pier columns had generated 1350 kgf/cm2 prestress losses within 1500 days after prestressing, which is 9.47% of the initial prestress. The box-girder in span B14 generated 1110~1900 kgf/cm2 internal prestress losses, accounting for 7.71%~12.03% of the initial prestress and 1309 kgf/cm2 external prestress losses, accounting for 9.12% of the initial prestress within 1300 days.
1.ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” American Concrete Institute, Oct. 1978, 98 pp.
2.CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1978.
3.CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1990.
4.ASTM C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” American Association of State Highway and Transportation Officials, 1994.
5.ASTM C469, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
6.ACI Committee 318, “Building Code Requirements for Structural Concrete,” American Concrete Institute, 2005.
7.ACI Committee 363, “State-of-the-Art Report on High-Strength Concrete,” American Concrete Institute, 1997.
8.林樹柱,「預力混凝土設計及施工」,大中國圖書公司,台北(1993)。
9.混凝土工程委員會,「鋼筋混凝土學」,中國土木水利工程學會,台北(2009)。
10.林郁,「後拉法預鑄節塊墩柱預力損失之監測與評估」,國立成功大學碩士論文,台南(2013)。
11.陳宏,「後拉法預鑄節塊箱型梁橋預力損失之監測與評估」,國立成功大學碩士論文,台南(2013)。
12.林聖軒,「預鑄預力混凝土節塊墩柱與箱梁之長期變形監測」,國立成功大學碩士論文,台南(2015)。
13.許佑綸,「配置外置預力鋼腱預鑄節塊箱梁之長期變形研究」,國立成功大學碩士論文,台南(2016)。
14.方一匡,許佑綸,李旼學,謝建億,「高雄港聯外高架道路計畫第CM01標中山高速公路延伸路廊及商港區銜接路廊高架道路工程橋梁工程監測計畫第三階段成果報告(載重試驗成果報告(靜態載重試驗))」, 154pp.