簡易檢索 / 詳目顯示

研究生: 江文傑
Chiang, Wen-Chieh
論文名稱: 奈米鐵粒子摻雜磁性高分子半導體
Magnetic polymer semiconductor doped by nano Fe3O4 particles
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 有機磁性高分子半導體聚(3-己基噻吩)磁滯曲線
外文關鍵詞: magnetic polymer semiconductor, P3HT thin film, hysteresis curve
相關次數: 點閱:70下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用有機高分子半導體製程技術取代小分子半導體製程技術以節省薄膜製程所需花費的時間,實驗使用之有機高分子半導體材料為聚(3-己基噻吩) (Poly(3-hexylthiophene-2,5-diyl), P3HT)並藉由摻雜超順磁性的Fe3O4磁性奈米粒子,來了解有機磁性高分子半導體的磁特性表現,實驗結果顯示,有機磁性高分子半導體薄膜較純的Fe3O4磁性薄膜具有較高的矯頑力,說明有機高分子半導體P3HT與Fe3O4磁性奈米粒子之間有產生自旋耦合(Spin-Coupling)之量子效應,因而提升了磁特性表現。
    實驗顯示P3HT分子中C=C鍵結的π電子雲會與磁性奈米粒子中的磁矩產生交互作用,由拉曼光譜分析便可以得知,P3HT分子中的C=C伸縮振動能帶會受到磁性奈米粒子的影響,而施加外加磁場能更進一步提升P3HT分子與Fe3O4磁性奈米粒子之間的耦合程度,並從磁力顯微鏡(MFM)以及超導量子干涉震動磁量儀(SQUID)等物性分析中,更能清楚的看到P3HT分子摻入Fe3O4磁性奈米粒子後磁特性的提升,證實P3HT分子與Fe3O4磁性奈米粒子之間的自旋耦合會提升磁性薄膜的磁特性表現。

    We successfully fabricate the thin films of magnetic polymer semiconductor composed of P3HT and Fe3O4 nano particles in efficient way at ambient temperature. The magnetic polymer semiconductor had remarkably ferrimagnetic hysteresis curve at ambient temperature, which indicated that there is an intense spin-coupling between P3HT molecules and Fe3O4 nano particles. After the horizontal magnetic field were applied on the Fe3O4-doped P3HT films, the magnetic signal on the surface of such films were more obvious through the observation of magnetic force microscopy. Through Raman spectroscopy analyses of Fe3O4-doped P3HT films, we observed that the electron coupling degree between the P3HT molecules increased after the application of the external magnetic field. It may be affected by the microstructures of polymer film or the existence of electronic coupling between π-electron cloud of P3HT molecules and 2p orbital electron of Fe3O4 atoms.

    中文摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論基礎 5 2.1 有機高分子半導體材料 5 2.2 磁性理論 6 2.2.1 磁性的由來 6 2.2.2 磁性物質的分類 7 2.2.3 磁滯曲線(Magnetic Hysteresis Loop) 12 第三章 實驗儀器與樣品製程 19 3.1 實驗材料介紹 19 3.1.1 有機高分子材料 19 3.1.2 高分子修飾層材料 19 3.1.3 磁性奈米粒子 19 3.1.4 有機溶劑 19 3.2 分析儀器介紹 20 3.2.1 原子力顯微鏡 (Atomic Force Microscope,AFM) 20 3.2.2 磁力顯微鏡 (Magnetic Force Microscope,MFM) 20 3.2.3 表面電位顯微鏡 (Scanning Kelvin Probe Microscope, SKPM)[22] 21 3.2.4 低掠角入射X光繞射 (Grazing Incident X-ray Diffraction, GIXRD) 22 3.2.5 拉曼光譜儀 (Raman Spectrometer) 23 3.2.6 超導量子干涉震動磁量儀 (superconducting Quantum interference device magnetometer, SQUID) 23 3.2.7 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 24 3.2.8 光致發光光譜系統 (Photoluminescence,PL) 25 3.2.9 紫外線/可見光光譜儀 (UV) 25 3.2.10 化學分析電子光譜儀 – XPS (Electron spectroscopy for chemical analysis, ESCA) 26 3.3 研究方法 - 樣品製作 27 3.3.1 基板切割及清潔 27 3.3.2 溶液調配 27 3.3.3 旋轉塗佈高分子修飾層 28 3.3.5 旋轉塗佈高分子有機材料 - P3HT (p-xylene) 0.05wt% 28 3.3.6 旋轉塗佈磁性奈米粒子 29 3.3.7 旋轉塗佈高分子有機材料 - P3HT (p-xylene) 0.3wt% 29 第四章 實驗結果與討論 36 4.1 前言 36 4.2 有機磁性薄膜表面結構分析 36 4.2.1 AFM分析 36 4.2.2 XPS分析 37 4.2.3 TEM分析 38 4.3 有機磁性薄膜物性分析 39 4.3.1 SKPM分析 39 4.3.2 紫外線/可見光光譜分析 40 4.3.3 PL分析 41 4.3.4 拉曼光譜分析 42 4.3.5 XRD分析 43 4.4 有機磁性薄膜磁特性分析 44 4.4.1 MFM分析 44 4.4.2 SQUID分析 46 第五章 結論 68 5.1 實驗結論 68 5.2 未來展望 68 參考文獻 70

    [1] G. Horowitz, “Organic Field-Effect Transistors”, Advanced Material, 10, 365, 1998.

    [2] J. Collet, O. Tharaud, A. Chapoton, D. Vuillaume, “Low-Voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films”, Applied Physics Letters, 76, 1941, 2000.

    [3] 吳德和, "磁阻是隨機存取記憶體技術的發展-現在與未來”, 物理雙月刊, 卷26, 2004.

    [4] Leonardo G. Paterno, Maria A. G. Soler∗, Fernando J. Fonseca,
    Joao P. Sinnecker, Elis H. C. P. Sinnecker, Emilia C. D. Lima4 Sonia N. Bao, Miguel A. Novak, and Paulo C. Morais, “Magnetic Nanocomposites Fabricated via the Layer-by-Layer Approach”, Nanoscience and Nanotechnology, 10, 2679–2685, 2010.

    [5] Isa Karimzadeh, Mustafa Aghazadeh, Mohammad Reza Ganjali, Taher Doroudi, Peir Hossein Kolivand, “Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route”, Journal of Magnetism and Magnetic Materials, 2017, 148 – 154.

    [6] Susmita Pal; Arun K. Nandi J. Appl. Polymer Sci. 2006, 6, 101.

    [7] Christopher M Pochas, Francis C. Spano, “New insights on the nature of two-dimensional polarons in semiconducting polymers: Infrared absorption in poly(3-hexylthiophene)”, The Journal of Chemical Physics, 2014.

    [8] C. Castelnovo et al, “Magnetic monopoles in spin ice”, nature, 451, 2008.

    [9] JINHAO GAO et al, “Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications”, ACCOUNTS OF CHEMICAL RESEARCH, 8,42,1097-1107, 2009.

    [10] Zhijun Wang et al, “Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb)”, Phys. Rev. B, 85,195320, 2012.

    [11] Bevin Huang et al, “Magnetic monopoles in spin ice”, nature,546, 2017.

    [12] J. M. D. COEY et al, “Donor impurity band exchange in dilute
    ferromagnetic oxides”, nature,4, 2005.

    [13] Julia A. Mundy1 et al, “Atomically engineered ferroic layers yield a roomtemperature magnetoelectric multiferroic”, nature,537, 2016.

    [14] Mingfei Shao et al, “Preparation of Fe3O4@SiO2@Layered Double Hydroxide Core−Shell Microspheres for Magnetic Separation of Proteins”, J. Am. Chem. Soc,134, 2012.

    [15] Yonghui Deng et al, “Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins”, J. AM. CHEM. SOC,130,28-29, 2008.

    [16] Chikazumi, S., “磁性物理學”, 聯經公司出版, 1981.

    [17] Brian D Plouffe, Shashi K Murthy, Laura H Lewis, “Fundamentals and application of magnetic particles in cell isolation and enrichment: a review”, Reports on Progress in Physics, 2014.

    [18] V. Hernandez, C. Castiglioni, M. Del Zoppo, and G. Zerbi, “Confinement potential and π-electron delocalization in polyconjugated organic materials”, Physical Review B 50, 9815, 1994.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE