| 研究生: |
高詩涵 Gao, Shi-Han |
|---|---|
| 論文名稱: |
前翼於水平軸風機之應用與田口法最佳化分析 Canard for horizontal axis wind turbine application and Taguchi method analysis |
| 指導教授: |
夏育群
Shiah, Yui-Chuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 水平軸風機 、田口法 、前翼 |
| 外文關鍵詞: | Horizontal axis wind turbine, Taguchi method, Canard |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用數值模擬與風洞實驗探討前翼對變速型水平軸式風力機葉片性能之失速特性並以田口方法設計實驗參數組合,以較精簡的次數找尋適合於變速型水平軸式風力機翼前翼葉片最佳幾何參數設計。從數值模擬及風洞實驗結果發現,其最佳化前翼參數可用於葉片元素動量理論之葉片,改善葉片低轉數高攻角失速之特性並對於葉片扭矩值及效率有所提升。利用數值模擬觀察葉片表面之流場現象,可發現具有前翼之葉片會在葉片低轉數失速時在後端翼面產生渦流產生壓力,此一效應也為其葉片在失速時扭矩值的來源。這現象可證明前翼葉片可利用於流場控制特性於低轉速情況下來提升水平軸式風力機葉片性能。
In this study, the research is focused on the numerical simulation and wind tunnel experiment of canard on blades performance at the stall region of small-scale horizontal axis wind turbine with variable rotational speed. Taguchi Method has been used to set up the numerical experiments in search of a set of geometric parameters of canard on blades.From numerical simulation and wind tunnel experimental results showed that the optimal parameters of the canard on blades has higher C_p and torque than other without the canard rotor models at the lower tip speed ratio.From observing the flow fields on the blades, it can be seen that the blade-root begin the vortex convergence phenomenon. The vortex convergence phenomenon can improve the performance during the stall region for HAWT, and this result show out the flow control in the blade is possible.
[1]Manwell, J. F., McGowan, J. G., and Rogers, A. L., "Wind Energy Explained—Theory, Design and Application", John Wiley & Sons Ltd, United Kingdom W. S., pp.83-138., (2009).
[2]Duran, S., "Computer-Aided Design of Horizontal-Axis Wind Turbine Blades." Department of Mechanical Engineering, Thesis of Master, Natural and Applied Sciences of Middle East Technical University., (2005).
[3]Ge, Li., "Aerodynamic characteristics of a novel catapult launched morphing tandem-wing unmanned aerial vehicle", Advances in Mechanical Engineering, (2017).
[4]Guo-Yuan Huang, “The Study of Leading Edge Protuberances on Blade Performance of Horizontal Axis Wind Turbine”, Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
[5]Chang-chi Haung, "Optimal Design of the protuberant Baldes of a horizontal Axis Wind Turbine", Department of Aeronautics and Astronautics, National Cheng Kung University. (2015).
[6]Cha-hao, Chen, “Taguchi Methods for Quality Design” Department of Machinism, National Cheng Kung University. (2017).
[7]H. Johari, C.W. Henoch, D. Custodio, A. Levshin, "Effects of Leading-Edge Protuberances on Airfoil Performance", AIAA Journal Vol.45.11,P.2634-2642 (2007)
[8]E. van Nierop, S. Alben, M. Brenner, "How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model", Physical Review Letters Vol.100 (5), (2008).
[9]J. L. E. Guerreiro, J. M. M. Sousa, "Low-Reynolds-Number Effects in Passive Stall Control Using Sinusoidal Leading Edges", AIAA Journal ,Vol.2 ,P.461-469, (2012)
[10] R.-K. Zhang, V.D.J.-Z. Wu, "Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge", Wind Energy Vol.15 (3), P.407-424, (2012)
[11]N. Rostamzadeh, R. M. Kelso, B. B. Dally and K. L. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics', Physics of Fluids Vol.25, 117101(2013)
[12]N. Rostamzadeh, K. L. Hansen, R. M. Kelso and B. B. Dally, "The formation mechanism and impact of streamwise vortics on NACA 0021 airfoil's performance with undulating leading edge modification',Physics of Fluids Vol.26, 107101(2014)
[13]Guo-Yuan Huang, “The Study of Leading Edge Protuberances on Blade Performance of Horizontal Axis Wind Turbine”, Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
[14]J.J.G. MichaelS. Selig, Andy P. Broeren “Low-Speed-Airfoil-Data-V1”, Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign, USA, P.286. (1995)
[15]Patankar, S. V. and Spalding, D. B., "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows." International Journal of Heat and Mass Transfer 15(10): 1787-1806., 1972.
[16]李輝煌,“田口方法:品質設計的原理與實務”,高麗圖書有限公司出版,2008年。
[17]Meng-Hsien Lee, “Numerical Simulation of The Aerodynamic Performance of Horizontal-Axis Wind Turbine Blades”, Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
[18]FLUENT 6.3, User Guide, FLUENT Incorporated, 2006.
[19]ANSYS FLUENT, “ANSYS FLUENT 14.0 Theory Guide,”ANSYS Inc, 2011.
[20]Baliga, B. R. and Patankar, S. V., “A Control Volume Finite-element Method for Two-dimensional Fluid Flow and Heat Transfer”, Numerical Heat Transfer, Vol.6, 1983, PP. 245-261.
[21]Wilcox, D. C., "Multiscale Model for Turbulent Flows." AIAA Journal 26(11): 1311-1320., (1988).
[22]Menter, F. R., "Two-equation Eddy-viscosity Turbulence Models for Engineering Applications." AIAA Journal 32(8): 1598-1605., (1994).
[23]Drela, M., "XFOIL: An Analysis and Design System for Low Reynolds Number Airfoil," Dept. of Aeronautics and Astronautics. MIT, (1989).
[24]Schreck, S. J. Sorensen, N. N., and Robinson, M. C., “Aerodynamic structures and processes in rotationally augmented flow fields,” Wind Energy, 10, pp. 159-178. (2007)
校內:立即公開