簡易檢索 / 詳目顯示

研究生: 王辰伃
Wang, Chen-Yu
論文名稱: 聚偏氟乙烯接枝聚醚高分子之合成鑑定與其鋰電池擬固態電解質應用
Synthesis and Characterization of Polyvinylidene Fluoride Grafted with Polyether Used as Quasi-Solid-State Polymer Electrolytes for Lithium Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 鋰電池高分子電解質聚偏氟乙烯臭氧合成法
外文關鍵詞: lithium batteries, polymer electrolytes, polyvinylidene fluoride, ozone-induced polymerization
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用臭氧合成法(Ozone-induced polymerization),將聚醚高分子鏈段接枝於聚偏氟乙烯(PVDF)主鏈上,此聚偏氟乙烯接枝聚醚高分子於本研究中稱為mPVDF,並與寡聚物及鋰鹽混摻,製備成固態高分子電解質。經由核磁共振光譜與傅立葉轉換紅外線光譜儀證實將聚醚高分子成功接枝於聚偏氟乙烯;藉由微差式掃描熱卡計分析得知寡聚物擁有塑化劑功能,可有效降低整體固態電解質Tg溫度;由熱重分析可發現聚醚高分子與寡聚物之間具有良好的相容性。電化學性質方面,改質之固態高分子電解質之離子傳導度在30℃~80℃下可達1×10-3 S/cm以上;電化學穩定電位窗可達4.7V;對稱鋰金屬電池靜置儲存七天介面阻抗變化為153Ω且長效充放電電壓變化穩定;鋰金屬電池於不同充放電速率下(0.1C~5C)具有良好之電容值,分別在室溫與60℃下1C可達93 mAh/g與148 mAh/g;而循環長效壽命經過100圈0.5C充放電下,也接近99.9%之庫倫效率值;經由SEM分析經過充放電之鋰金屬發現,改質之固態高分子電解質之鋰金屬表面鈍化層平整。此研究之固態高分子電解質具有上述之良好特性,將其應用在鋰金屬電池中,能進一步提升電池安全性。

    Synthesis of a modified polyvinylidene fluoride polymer grafted polyether via ozone-induced polymerization has been characterized with 1H-NMR and FTIR. We used this modified polymer as main matrix for solid polymer electrolyte (SPE) system, which was blended with oligomers, poly(ethylene glycol) dimethyl ether (PEGDME), and lithium salts. After mixed with the oligomers and lithium salt, the SPE_mF70 exhibit high ionic conductivity (1.01×10−3 S/cm at 30℃) and excellent electrochemical performance. Comparing with commercial polyvinylidene fluoride, the modified PVDF-based SPE possessed polyethylene oxide chains could improve the specific capacity of 146 mAhg-1 under a discharging current density of 1 C at 60℃ and 147 mAhg-1 under 0.5 C at ambient temperature, implying that the polyethylene oxide chains grafted on the modified PVDF could enhance conductivity of lithium ions. Also, the great compatibility between oligomers and polyether chains will reduce the lithium dendrite growth and improve the electrode/electrolytes interface. The presented results make it as potential promising material for solid polymer electrolytes applied on lithium ion battery.

    中文摘要 I Abstract II 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 鋰電池簡介 2 1.3 固態鋰電池簡介 4 1.4 研究動機 6 第二章 文獻回顧 7 2.1 鋰離子電池基本原理 7 2.2 鋰金屬電池 8 2.3 高分子電解質簡介 10 2.3.1 固態高分子電解質 12 2.3.1.1 常用之高分子主體 13 2.3.1.2 高分子主體改質 16 2.3.2 膠態高分子電解質 17 2.3.3 複合高分子電解質 18 2.4 導電鋰鹽 19 2.5 臭氧合成法 21 第三章 實驗 23 3.1 實驗藥品與材料 23 3.2 儀器設備 24 3.3 樣品製備 25 3.3.1 聚偏氟乙烯接枝聚醚高分子之合成 25 3.3.2 高分子膜之製備 25 3.3.3 正極極片之製備 27 3.3.4 鈕扣型電池組裝 28 3.4 實驗鑑定與分析 29 3.4.1 核磁共振光譜(1H-NMR) 29 3.4.2 傅立葉轉換紅外線光譜儀(FT-IR) 29 3.4.3 環氧當量測定(Epoxide equivalent weight, EEW) 29 3.4.4 微差式掃描熱卡計(Differential Scanning Calorimetry, DSC) 31 3.4.5 熱重分析儀(Thermogravimetric Analysis, TGA) 32 3.4.6 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 32 3.4.7 鋰離子遷移數之量測(Lithium ion transference number) 32 3.4.8 對稱鋰金屬儲存放置阻抗分析 33 3.4.9 對稱鋰金屬長效充放電測試 33 3.4.10 電池充放電測試與長效分析 34 3.4.11 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 34 3.4.12 離子傳導度測量(Ionic conductivity) 35 3.4.13 鋰表面分析 36 第四章 結果與討論 37 4.1 聚偏氟乙烯接枝聚醚高分子之鑑定 37 4.1.1 核磁共振光譜(1H-NMR) 37 4.1.2 傅立葉轉換紅外線光譜儀(FTIR) 39 4.2 熱轉移性質分析(DSC) 40 4.3 熱重分析(TGA) 42 4.4 離子傳導度分析 45 4.5 線性掃描伏安法之電化學穩定性分析 49 4.6 鋰離子遷移數 (Lithium ion transference number, TLi+) 50 4.7 對稱鋰金屬儲存放置之電化學阻抗分析 52 4.8 對稱鋰金屬長效充放電測試 55 4.9 鋰金屬電池充放電效能測試 57 4.10 鋰金屬電池長效能測試 61 4.11 鋰金屬表面分析 63 第五章 結論 71 第六章 參考文獻 72

    [1] J.-M. Tarascon, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” NATURE, vol. 414, 2001.
    [2] R. C. Agrawal, and G. P. Pandey, “Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview,” Journal of Physics D: Applied Physics, vol. 41, no. 22, pp. 223001, 2008.
    [3] J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, “Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives,” ChemSusChem, vol. 8, no. 13, pp. 2154-75, Jul 8, 2015.
    [4] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, “All solid-state polymer electrolytes for high-performance lithium ion batteries,” Energy Storage Materials, vol. 5, pp. 139-164, 10//, 2016.
    [5] A. Varzi, R. Raccichini, S. Passerini, and B. Scrosati, “Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries,” J. Mater. Chem. A, vol. 4, no. 44, pp. 17251-17259, 2016.
    [6] B. Scrosati, “History of lithium batteries,” Journal of Solid State Electrochemistry, vol. 15, no. 7, pp. 1623-1630, 2011.
    [7] K. Ozawa, “Lithium-ion rechargeable batteries with LiCoO 2 and carbon electrodes: the LiCoO 2/C system,” Solid State Ionics, vol. 69, pp. 212-221, 1994.
    [8] Z. Xue, D. He, and X. Xie, “Poly(ethylene oxide)-based electrolytes for lithium-ion batteries,” J. Mater. Chem. A, vol. 3, no. 38, pp. 19218-19253, 2015.
    [9] C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, “Recent advances in all-solid-state rechargeable lithium batteries,” Nano Energy, vol. 33, pp. 363-386, 3//, 2017.
    [10] D. Lin, Y. Liu, and Y. Cui, “Reviving the lithium metal anode for high-energy batteries,” Nat Nano, vol. 12, no. 3, pp. 194-206, 03//print, 2017.
    [11] D. Zhou, R. Liu, Y.-B. He, F. Li, M. Liu, B. Li, Q.-H. Yang, Q. Cai, and F. Kang, “SiO2Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life,” Advanced Energy Materials, vol. 6, no. 7, pp. 1502214, 2016.
    [12] Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P.-C. Hsu, S. Chu, and Y. Cui, “Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes,” Nano Letters, vol. 15, no. 5, pp. 2910-2916, 2015/05/13, 2015.
    [13] J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, and S. Park, “A review of lithium and non-lithium based solid state batteries,” Journal of Power Sources, vol. 282, pp. 299-322, 2015.
    [14] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud, “Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts,” Solid State Ionics, vol. 11, no. 1, pp. 91-95, 1983/09/01, 1983.
    [15] A. Arya, and A. L. Sharma, “Polymer electrolytes for lithium ion batteries: a critical study,” Ionics, vol. 23, no. 3, pp. 497-540, 2017.
    [16] K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, “A review of polymer electrolytes: fundamental, approaches and applications,” Ionics, vol. 22, no. 8, pp. 1259-1279, 2016.
    [17] D. Zhou, Y.-B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.-H. Yang, and F. Kang, “In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries,” Advanced Energy Materials, vol. 5, no. 15, pp. 1500353, 2015.
    [18] J. Zhang, J. Zhao, L. Yue, Q. Wang, J. Chai, Z. Liu, X. Zhou, H. Li, Y. Guo, G. Cui, and L. Chen, “Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries,” Advanced Energy Materials, vol. 5, no. 24, pp. 1501082, 2015.
    [19] D. Saikia, Y.-C. Pan, C.-G. Wu, J. Fang, L.-D. Tsai, and H.-M. Kao, “Synthesis and characterization of a highly conductive organic-inorganic hybrid polymer electrolyte based on amine terminated triblock polyethers and its application in electrochromic devices,” Journal of Materials Chemistry C, vol. 2, no. 2, pp. 331-343, 2014.
    [20] D. Lin, W. Liu, Y. Liu, H. R. Lee, P. C. Hsu, K. Liu, and Y. Cui, “High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide),” Nano Lett, vol. 16, no. 1, pp. 459-65, Jan 13, 2016.
    [21] R. Tan, R. Gao, Y. Zhao, M. J. Zhang, J. Xu, J. Yang, and F. Pan, “Novel organic-inorganic hybrid Electrolyte to enable LiFePO4 quasi-solid-state Li-ion batteries performed highly around room temperature,” ACS Appl Mater Interfaces, Oct 27, 2016.
    [22] S. Cheng, D. M. Smith, Q. Pan, S. Wang, and C. Y. Li, “Anisotropic ion transport in nanostructured solid polymer electrolytes,” RSC Advances, vol. 5, no. 60, pp. 48793-48810, 2015.
    [23] Y. Zhang, W. Cai, R. Rohan, M. Pan, Y. Liu, X. Liu, C. Li, Y. Sun, and H. Cheng, “Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte,” Journal of Power Sources, vol. 306, pp. 152-161, 2016.
    [24] E. Quartarone, and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives,” Chem Soc Rev, vol. 40, no. 5, pp. 2525-40, May, 2011.
    [25] J. Xu, J. Li, Y. Zhu, K. Zhu, Y. Liu, and J. Liu, “A triPEG-boron based electrolyte membrane for wide temperature lithium ion batteries,” RSC Advances, vol. 6, no. 24, pp. 20343-20348, 2016.
    [26] J. Zhang, C. Ma, J. Liu, L. Chen, A. Pan, and W. Wei, “Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery,” Journal of Membrane Science, vol. 509, pp. 138-148, 2016.
    [27] D. D. Girolamo, S. Panero, M. A. Navarra, and J. Hassoun, “Quaternary Polyethylene Oxide Electrolytes Containing Ionic Liquid for Lithium Polymer Battery,” Journal of The Electrochemical Society, vol. 163, no. 7, pp. A1175-A1180, 2016.
    [28] Y. Ma, L. B. Li, G. X. Gao, X. Y. Yang, and Y. You, “Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries,” Electrochimica Acta, vol. 187, pp. 535-542, 2016.
    [29] L. TianKhoon, N. Ataollahi, N. H. Hassan, and A. Ahmad, “Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices,” Journal of Solid State Electrochemistry, vol. 20, no. 1, pp. 203-213, 2015.
    [30] Y. Lin, J. Li, Y. Lai, C. Yuan, Y. Cheng, and J. Liu, “A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries,” RSC Advances, vol. 3, no. 27, pp. 10722, 2013.
    [31] Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue, and F. Wang, “Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy,” Electrochimica Acta, vol. 41, no. 9, pp. 1443-1446, 1996/06/01, 1996.
    [32] G. B. Appetecchi, and B. Scrosati, “A lithium ion polymer battery,” Electrochimica Acta, vol. 43, no. 9, pp. 1105-1107, 1998/04/14, 1998.
    [33] S. Bi, C.-N. Sun, T. A. Zawodzinski, F. Ren, J. K. Keum, S.-K. Ahn, D. Li, and J. Chen, “Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties,” Journal of Polymer Science Part B: Polymer Physics, vol. 53, no. 20, pp. 1450-1457, 2015.
    [34] J. Xi, X. Qiu, J. Li, X. Tang, W. Zhu, and L. Chen, “PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity,” Journal of Power Sources, vol. 157, no. 1, pp. 501-506, 2006.
    [35] R. Khurana, J. L. Schaefer, L. A. Archer, and G. W. Coates, “Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries,” J Am Chem Soc, vol. 136, no. 20, pp. 7395-402, May 21, 2014.
    [36] J. R. Nair, D. Cíntora-Juárez, C. Pérez-Vicente, J. L. Tirado, S. Ahmad, and C. Gerbaldi, “Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4,” Electrochimica Acta, vol. 199, pp. 172-179, 2016.
    [37] J. Rolland, J. Brassinne, J. P. Bourgeois, E. Poggi, A. Vlad, and J. F. Gohy, “Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries,” Journal of Materials Chemistry A, vol. 2, no. 30, pp. 11839, 2014.
    [38] L. Porcarelli, A. S. Shaplov, M. Salsamendi, J. R. Nair, Y. S. Vygodskii, D. Mecerreyes, and C. Gerbaldi, “Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries,” ACS Appl Mater Interfaces, vol. 8, no. 16, pp. 10350-9, Apr 27, 2016.
    [39] Y. Kitazawa, K. Iwata, S. Imaizumi, H. Ahn, S. Y. Kim, K. Ueno, M. J. Park, and M. Watanabe, “Gelation of Solvate Ionic Liquid by Self-Assembly of Block Copolymer and Characterization as Polymer Electrolyte,” Macromolecules, vol. 47, no. 17, pp. 6009-6016, 2014.
    [40] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. P. Bonnet, T. N. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, and M. Armand, “Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries,” Nat Mater, vol. 12, no. 5, pp. 452-7, May, 2013.
    [41] J. Mindemark, B. Sun, E. Törmä, and D. Brandell, “High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature,” Journal of Power Sources, vol. 298, pp. 166-170, 2015.
    [42] J.-H. Baik, D.-G. Kim, J. Shim, J. H. Lee, Y.-S. Choi, and J.-C. Lee, “Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries,” Polymer, vol. 99, pp. 704-712, 2016.
    [43] Q. Lu, Y.-B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, and Q.-H. Yang, “Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte,” Advanced Materials, vol. 29, no. 13, pp. 1604460-n/a, 2017.
    [44] Q. Pan, D. M. Smith, H. Qi, S. Wang, and C. Y. Li, “Hybrid electrolytes with controlled network structures for lithium metal batteries,” Adv Mater, vol. 27, no. 39, pp. 5995-6001, Oct 21, 2015.
    [45] H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, and M. Armand, “Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries,” Electrochimica Acta, vol. 220, pp. 587-594, 2016.
    [46] J. Shim, J. W. Lee, K. Y. Bae, H. J. Kim, W. Y. Yoon, and J.-C. Lee, “Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries,” ChemSusChem, pp. n/a-n/a, 2017.
    [47] J. Zhang, C. Ma, Q. Xia, J. Liu, Z. Ding, M. Xu, L. Chen, and W. Wei, “Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries,” Journal of Membrane Science, vol. 497, pp. 259-269, 2016.
    [48] A. Manuel Stephan, “Review on gel polymer electrolytes for lithium batteries,” European Polymer Journal, vol. 42, no. 1, pp. 21-42, 1//, 2006.
    [49] H. Kim, T. Y. Kim, V. Roev, H. C. Lee, H. J. Kwon, H. Lee, S. Kwon, and D. Im, “Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications,” ACS Appl Mater Interfaces, vol. 8, no. 2, pp. 1344-50, Jan 20, 2016.
    [50] J. K. Kim, J. Scheers, T. J. Park, and Y. Kim, “Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries,” ChemSusChem, vol. 8, no. 4, pp. 636-41, Feb, 2015.
    [51] J. E. Weston, and B. C. H. Steele, “Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes,” Solid State Ionics, vol. 7, no. 1, pp. 75-79, 1982/08/01, 1982.
    [52] D. Golodnitsky, G. Ardel, and E. Peled, “Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes,” Solid State Ionics, vol. 147, no. 1–2, pp. 141-155, 3/1/, 2002.
    [53] Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, and X. Xu, “A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries,” Journal of Power Sources, vol. 301, pp. 47-53, 2016.
    [54] K. Fu, Y. H. Gong, J. Q. Dai, A. Gong, X. G. Han, Y. G. Yao, C. W. Wang, Y. B. Wang, Y. N. Chen, C. Y. Yan, Y. J. Li, E. D. Wachsman, and L. B. Hu, “Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 26, pp. 7094-7099, Jun, 2016.
    [55] J. W. Fergus, “Ceramic and polymeric solid electrolytes for lithium-ion batteries,” Journal of Power Sources, vol. 195, no. 15, pp. 4554-4569, 2010.
    [56] V. Aravindan, J. Gnanaraj, S. Madhavi, and H. K. Liu, “Lithium‐Ion Conducting Electrolyte Salts for Lithium Batteries,” Chemistry - A European Journal, vol. 17, no. 51, pp. 14326-14346, 2011.
    [57] Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama, and A. Yamada, “Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes,” ChemElectroChem, vol. 2, no. 11, pp. 1687-1694, 2015.
    [58] K. Fujimoto, Y. Takebayashi, H. Inoue, and Y. Ikada, “Ozone-induced graft polymerization onto polymer surface,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 31, no. 4, pp. 1035-1043, 1993.
    [59] L. Ying, P. Wang, E. T. Kang, and K. G. Neoh, “Synthesis and Characterization of Poly(acrylic acid)-graft-poly(vinylidene fluoride) Copolymers and pH-Sensitive Membranes,” Macromolecules, vol. 35, no. 3, pp. 673-679, 2002/01/01, 2002.
    [60] P. Wang, K. Tan, E. T. Kang, and K. Neoh, “Synthesis, characterization and anti-foulingproperties of poly (ethylene glycol) grafted poly (vinylidenefluoride) copolymer membranes,” Journal of Materials Chemistry, vol. 11, no. 3, pp. 783-789, 2001.
    [61] Y. Chang, Y.-J. Shih, R.-C. Ruaan, A. Higuchi, W.-Y. Chen, and J.-Y. Lai, “Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility,” Journal of Membrane Science, vol. 309, no. 1–2, pp. 165-174, 2/15/, 2008.
    [62] Y. Chang, C.-Y. Ko, Y.-J. Shih, D. Quémener, A. Deratani, T.-C. Wei, D.-M. Wang, and J.-Y. Lai, “Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization,” Journal of Membrane Science, vol. 345, no. 1–2, pp. 160-169, 12/1/, 2009.
    [63] Y. Chen, L. Ying, W. Yu, E. T. Kang, and K. G. Neoh, “Poly(vinylidene fluoride) with Grafted Poly(ethylene glycol) Side Chains via the RAFT-Mediated Process and Pore Size Control of the Copolymer Membranes,” Macromolecules, vol. 36, no. 25, pp. 9451-9457, 2003/12/01, 2003.
    [64] G. Zhai, L. Ying, E. T. Kang, and K. G. Neoh, “Synthesis and Characterization of Poly(vinylidene fluoride) with Grafted Acid/Base Polymer Side Chains,” Macromolecules, vol. 35, no. 26, pp. 9653-9656, 2002/12/01, 2002.
    [65] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, “Progress in the production and modification of PVDF membranes,” Journal of Membrane Science, vol. 375, no. 1–2, pp. 1-27, 6/15/, 2011.
    [66] Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, and C.-H. Lee, “Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization,” Journal of Membrane Science, vol. 169, no. 2, pp. 269-276, 2000/05/01/, 2000.
    [67] J. Evans, C. A. Vincent, and P. G. Bruce, “Electrochemical measurement of transference numbers in polymer electrolytes,” Polymer, vol. 28, no. 13, pp. 2324-2328, 1987/12/01, 1987.
    [68] 庄全超, 徐守冬, 邱祥云, 崔永丽, 方亮, and 孙世刚, “锂离子电池的电化学阻抗谱分析,” 化學進展, vol. 22, 2010.
    [69] B.-Y. Chang, and S.-M. Park, “Electrochemical Impedance Spectroscopy,” Annual Review of Analytical Chemistry, vol. 3, no. 1, pp. 207-229, 2010.
    [70] D. Sinirlioglu, A. E. Muftuoglu, and A. Bozkurt, “Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly(vinylphosphonic acid) with PVDF by means of poly(glycidyl methacrylate) grafts,” Journal of Polymer Research, vol. 22, no. 8, 2015.
    [71] D. K. Roh, S. H. Ahn, J. A. Seo, Y. G. Shul, and J. H. Kim, “Synthesis and characterization of grafted/crosslinked proton conducting membranes based on amphiphilic PVDF copolymer,” Journal of Polymer Science Part B: Polymer Physics, vol. 48, no. 10, pp. 1110-1117, 2010.
    [72] A. R. Polu, D. K. Kim, and H.-W. Rhee, “Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies,” Ionics, vol. 21, no. 10, pp. 2771-2780, 2015.
    [73] Y. Li, J. Wang, J. Tang, Y. Liu, and Y. He, “Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG200, PEG400 and PEG600,” Journal of Power Sources, vol. 187, no. 2, pp. 305-311, 2009.
    [74] L. Porcarelli, A. S. Shaplov, F. Bella, J. R. Nair, D. Mecerreyes, and C. Gerbaldi, “Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature,” ACS Energy Letters, vol. 1, no. 4, pp. 678-682, 2016/10/14, 2016.
    [75] R. He, M. Echeverri, D. Ward, Y. Zhu, and T. Kyu, “Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: Effect of prepolymer molecular weight,” Journal of Membrane Science, vol. 498, pp. 208-217, 2016.
    [76] M. M. Hiller, A.-C. Gentschev, M. Amereller, H. Gores, M. Winter, and H. D. Wiemhöfer, “Salt-In-Polymer Electrolytes Based on Polysiloxanes for Lithium-Ion Cells: Ionic Transport and Electrochemical Stability,” ECS Transactions, vol. 33, no. 28, pp. 3-15, March 21, 2011, 2011.

    無法下載圖示 校內:2022-07-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE