| 研究生: |
易盈甄 Yi, Ying-Chen |
|---|---|
| 論文名稱: |
以合成生物學與代謝工程實現高價值化學品於非模式菌株生產及低碳足跡生物合成 Biosynthesis of high-value chemicals via synthetic biology and metabolic engineering in non-model microbe and low-carbon-footprint approaches |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 合成生物學 、代謝工程 、五胺基酮戊酸 、乙醇酸 、希瓦氏菌 、大腸桿菌 、低碳足跡 |
| 外文關鍵詞: | Synthetic biology, metabolic engineering, low carbon footprint, 5-aminolevulinic acid, glycolic acid, CRISPRi, Shewanella oneidensis, Escherichia coli, RuBisCo |
| 相關次數: | 點閱:133 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合成生物學為一跨領域工程概念,將系統生物學、基因工程、機械工程、資訊理論、物理學及電腦模擬等等結合於生物科學,達成對環境友善且永續的工程策略以應用於醫、農、食品、化學等不同產業。近年來隨著基因體學、轉錄體學及代謝體學的發展,更多資訊及技術加速合成生物學在生物製造的可行性及機會。
由於石油的濫用與大量石油衍生產品,造成溫室效應與極端氣候,成為最受注重且急迫的環境問題。達成碳中和、淨零碳排、或負碳排是未來化學工程的使命與責任之一。於此,本論文旨在利用合成生物學與代謝工程,於微生物中建立低碳足跡生物合成高價值化學品。
五胺基酮戊酸 (5-aminolevulinic acid, ALA) 為生物體內之必須代謝物,在正常細胞能往下合成血基質 (heme),而在癌症細胞內則會以原紫質 IX (protoporphyrin IX)累積,能應用於癌症之光動力療法形成超氧活性物質 (ROS) 引發癌細胞凋亡。本文選用具有高血紅素合成能力的非模式菌株希瓦氏菌 (Shewanella oneidensis MR-1),以C4 及 C5 代謝路徑調控及合成生物學技術增強 ALA 生產。在 C5 途徑中,首先應用 CRISPR 干擾 (CRISPRi) 調升 TCA 循環中的碳通量、降低向血紅素的碳流出,結果在減弱關鍵基因 hemB 的表達後提升2倍5-ALA產量。在C4 途徑中,共表達葡萄糖激酶 GlK 與葡萄糖運輸蛋白 GalP 增強 MR-1 的葡萄糖利用效率。藉由將 T7 RNA 聚合酶、分子伴侶蛋白GroELS及莢膜紅細菌 (Rhodobacter capsulatus) 的ALA合成酶,獲得 M::TRG 菌株產207 mg/L ALA,與原菌相比可有效提高 145 倍的 ALA 產量。
為了建立一高效且低碳足跡之 ALA 合成方法,本文選用大腸桿菌 (Escherichia coli) 表達 1,5-二磷酸核酮糖羧化酶/加氧酶 (RuBisCo) 及磷酸核酮激酶 (Prk),藉由卡爾循環將二氧化碳 (CO2) 回收作為細胞生長和 ALA 合成的碳源。研究發現分子伴侶蛋白、稀有 tRNA、 ALAS 輔因子磷酸吡哆醛 (PLP) 的提供、整合到基因組等技術都有效提高產量。最後以饋料策略在最佳工程菌株可生產 14.3 g/L ALA。在低碳足跡方面,結合 RuBisCo、Prk、ALAS、pdxY 與 pRARE 五個重要基因元件,成功減少了 53.8% 的CO2排放量且生產 7.8 g/L ALA。將 ALA 應用於抗菌光動力療法 (aPDT),在三種病原菌的殺菌效率皆可達到 100% 殺菌率。
除了五胺基酮戊酸,乙醇酸 (glycolic acid, GA) 是最小的果酸分子,可應用於醫美產品及經聚合形成可降解之生物塑膠用於藥物釋放,而備受關注。因此,本文首次使用基因工程大腸桿菌並引入低碳足跡的方式生產 GA。以葡萄糖為碳源,微調 TCA 循環和乙醛酸分流 (glyoxylate shunt) 中的基因,GA 產率為 0.21 g/g,生產率為 0.08 g/L/h。為了維持細胞中輔因子 NADPH 的生成及平衡,我們將丙酮丁醇梭菌 (Clostridium acetobutylicum) 的甘油醛 3-磷酸脫氫酶 (gapC) 整合於大腸桿菌基因組中,剔除葡萄糖-6-磷酸-1-脫氫酶 (zwf) 以平衡細胞氧化還原狀態;在增強 CO2利用上,表達磷酸烯醇丙酮酸羧化酶 (ppc) 和丙酮酸羧化酶 (pyc) 引入更多碳流入 TCA 循環,在饋料發酵中成功提升 GA 產量和生產率至 11.9 g/L 和 0.23 g/L/h,同時降低 41% CO2 排放量。GA 可由縮合聚合反應合成聚乙醇酸,由傅里葉轉換紅外光譜 (FTIR) 和差示掃描量熱法 (DSC) 特性分析證明PGA合成成功,且熔點提高到217oC。
本論文闡明 CRISPRi 技術在希瓦氏菌中對 ALA 合成的血紅素合成途徑的調控,提出一種具備 RuBisCo 及高活性 ALAS 的大腸桿菌以達成低碳足跡之 ALA 生產。我們也發現在大腸桿菌中表達羧化酶 (carboxylase) 可有利細胞內使用CO2,獲得低碳排的 GA 生產製程。未來可將已開發的基因菌株應用在更多化學品合成,實現低碳排放且環境友好的高值化學品生產。
Synthetic biology is a multidisciplinary concept of engineering which combines systems biology, genetic and mechanical engineering, physics, and computer science with biological aspect to achieve the ecofriendly and sustainable strategies for pharmaceutical medical, agricultural, foods and chemicals and other industries. In recent years, with the development of genomics, transcriptomics, metabolomics and bioinformation, the advanced biotechnologies have accelerated the feasibility and opportunities of synthetic biology in biomanufacturing. Due to the abuse of petroleum and a great amount of petroleum derivatives, the greenhouse effect and extreme climate change have become the most critical and environmental problems. Chemical engineering is now in the transition state from release carbon to achieve net zero carbon emissions, or negative carbon emissions. This dissertation aims to establish low-carbon-footprint biosynthesis of high-value chemicals in microorganisms using synthetic biology and metabolic engineering.
5-aminolevulinic acid (ALA) is an essential metabolite in living organisms. It can be converted to synthesize heme in normal cells; however, it is converted to protoporphyrin IX and accumulated in cancer cells, and then causes apoptosis with reactive oxygen species in photodynamic therapy for cancer treatment. Herein, a non-model strain Shewanella oneidensis MR-1 with strong heme synthesis ability was selected for ALA production by regulating C4 and C5 metabolic pathways through synthetic biology techniques. In the C5 pathway, CRISPR interference (CRISPRi) was first applied to increase the carbon flux in the TCA cycle and reduced the carbon outflow to heme in MR-1, resulting in a 2-fold increment on 5-ALA production after reducing the expression of the key gene hemB. In the C4 pathway, the co-expression of glucokinase GlK and glucose transporter GalP enhanced the glucose utilization efficiency of MR-1. By combining T7 RNA polymerase, chaperone GroELS and ALA synthase from Rhodobacter capsulatus, the M::TRG strain was constructed and produced 207 mg/L ALA, which was a 145-times increase compared with that of the original strain.
To formulate a high-efficiency and low-carbon-footprint method for ALA synthesis, Escherichia coli was selected to express 1,5-bisphosphate ribulose carboxylase/oxygenase (RuBisCo) and phosphorribulose kinase (Prk) for carbon dioxide (CO2) recycle as a carbon source for cell growth and ALA synthesis via the Calvin cycle. In this section, we observed that techniques such as molecular chaperones, rare tRNAs, provision of the ALAS cofactor pyridoxal phosphate (PLP), and integration into the genome are showed significant improvement on ALA production. Finally, 14.3 g/L ALA was produced in the engineered strain with optimal feeding strategy. In terms of low carbon footprint, the combination of five critical genes RuBisCo, Prk, ALAS, pdxY and pRARE successfully reduced CO2 emissions by 53.8% and 7.8 g/L ALA was produced. Finally, we applied ALA to antimicrobial photodynamic therapy (aPDT), achieving 100 killing-rate on the elimination of three pathogens.
Aside from ALA, glycolic acid (GA) is the simplest molecule of hydroxycarboxylic acids. GA can be used in medical aesthetic products and polymerized to form biodegradable polymerase for drug release, attracting intensive attention in recent years. In this section, a genetically engineered E. coli was constructed to produce GA through a low carbon footprint approach for the first time. By applying glucose as the carbon source and fine-tuning the genes in the TCA cycle and glyoxylate shunt, the GA yield reached 0.21 g/g-glucose with the productivity at 0.08 g/L/h. To improve the production of NADPH and maintain the redox balance in cells, the glyceraldehyde 3-phosphate dehydrogenase (gapC) from Clostridium acetobutylicum was integrated into E. coli genome while the glucose-6-phosphate-1-dehydrogenase (zwf) was deleted. For the enhancement of CO2 utilization, phosphoenolpyruvate carboxylase (ppc) and pyruvate carboxylase (pyc) were expressed to introduce more carbon flux into TCA cycle for GA production, reaching 11.9 g/L and 0.23 g/L/h of titer and productivity in a fed-batch fermentation, as well as to reduce CO2 emissions by 41%. GA was then synthesized into polyglycolic acid through polycondensation, and the successful polymerization was verified by analysis of Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC), showing melting point at 217oC of PGA.
This dissertation elucidated the regulation of the heme synthesis pathway for ALA synthesis by CRISPRi technology in Shewanella and proposed an engineered E. coli with RuBisCo and highly active ALAS for ALA production with a low carbon footprint. We also demonstrated that the expression of carboxylase in E. coli showed benefits to the utilization of CO2, obtaining a low carbon emission process for GA production. In the future, the genetically developed strains can be applied to the synthesis of diverse chemicals, achieving low-carbon emission for sustainable production of high-value chemicals in industries.
1. Abdelaal AS and Yazdani SS. A genetic toolkit for co-expression of multiple proteins of diverse physiological implication. Biotechnology Reports. 32: e00692 (2021).
2. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E and Minakhin L. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353: aaf5573 (2016).
3. Aiguo Z and Meizhi Z. Production of 5-aminolevulinic acid from glutamate by overexpressing hemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli. World Journal of Microbiology and Biotechnology. 35: 175 (2019).
4. Antonovsky N, Gleizer S and Milo R. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin–Benson–Bassham cycle. Current Opinion in Biotechnology. 47: 83–91 (2017).
5. Ao X, Yao Y, Li T, Yang T-T, Dong X, Zheng Z-T, Chen G-Q, Wu Q and Guo Y. A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a. Frontiers in Microbiology. 9: 2307 (2018).
6. Ausländer S, Ausländer D and Fussenegger M. Synthetic biology—the synthesis of biology. Angewandte Chemie International Edition. 56: 6396–6419 (2017).
7. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL and Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology. 2: 2006–0008 (2006).
8. Baniasadi B and Vahabzadeh F. The performance of a cyanobacterial biomass-based microbial fuel cell (MFC) inoculated with Shewanella oneidensis MR-1. Journal of Environmental Chemical Engineering. 9: 106338 (2021).
9. Bar-Even A, Noor E and Milo R. A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany. 63: 2325–2342 (2012).
10. Baumann L, Baumann P, Mandel M and Allen RD. Taxonomy of aerobic marine eubacteria. Journal of Bacteriology. 110: 402–429 (1972).
11. Baym M, Shaket L, Anzai IA, Adesina O and Barstow B. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. Nature Communications. 7: 1–13 (2016).
12. Bechara EJ, Ramos LD and Stevani CV. 5-Aminolevulinic acid: A matter of life and caveats. Journal of Photochemistry and Photobiology. 7: 100036 (2021).
13. Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK and Zhou J. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. Journal of Bacteriology. 187: 7138–7145 (2005).
14. Bencheikh-Latmani R, Williams SM, Haucke L, Criddle CS, Wu L, Zhou J and Tebo BM. Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Applied and Environmental Microbiology. 71: 7453–7460 (2005).
15. Berrıos-Rivera SJ, Bennett GN and San K-Y. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metabolic Engineering. 4: 230–237 (2002).
16. Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE and Ringeisen BR. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnology and Bioengineering. 103: 524–531 (2009).
17. Bisello G, Longo C, Rossignoli G, Phillips RS and Bertoldi M. Oxygen reactivity with pyridoxal 5′-phosphate enzymes: biochemical implications and functional relevance. Amino Acids. 52: 1089–1105 (2020).
18. Boedicker JQ, Gangan M, Naughton K, Zhao F, Gralnick JA and El-Naggar MY. Engineering biological electron transfer and redox pathways for nanoparticle synthesis. Bioelectricity. 3: 126–135 (2021).
19. Bolm C, Kasyan A, Heider P, Saladin S, Drauz K, Günther K and Wagner C. Synthesis and use of α-silyl-substituted α-hydroxyacetic acids. Organic Letters. 4: 2265–2267 (2002).
20. Bottone EJ. Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews. 23: 382–398 (2010).
21. Braakman R and Smith E. The emergence and early evolution of biological carbon-fixation. PLoS Computational Biology. 8: e1002455 (2012).
22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254 (1976).
23. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S and Romine MF. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology. 73: 7003–7012 (2007).
24. Brown BL, Kardon JR, Sauer RT and Baker TA. Structure of the mitochondrial aminolevulinic acid synthase, a key heme biosynthetic enzyme. Structure. 26: 580-589.e4 (2018).
25. Bueso YF and Tangney M. Synthetic biology in the driving seat of the bioeconomy. Trends in Biotechnology. 35: 373–378 (2017).
26. Burgos WD, McDonough JT, Senko JM, Zhang G, Dohnalkova AC, Kelly SD, Gorby Y and Kemner KM. Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochimica et Cosmochimica Acta. 72: 4901–4915 (2008).
27. Bursac T, Gralnick JA and Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnology and Bioengineering. 114: 1283–1289 (2017).
28. Cabulong RB, Bañares AB, Nisola GM, Lee W-K and Chung W-J. Enhanced glycolic acid yield through xylose and cellobiose utilization by metabolically engineered Escherichia coli. Bioprocess and Biosystems Engineering. 44: 1081–1091 (2021).
29. Cabulong RB, Lee W-K, Bañares AB, Ramos KRM, Nisola GM, Valdehuesa KNG and Chung W-J. Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass. Applied Microbiology and Biotechnology. 102: 2179–2189 (2018).
30. Cai P-J, Xiao X, He Y-R, Li W-W, Chu J, Wu C, He M-X, Zhang Z, Sheng G-P, Lam MH-W, Xu F and Yu H-Q. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Applied Microbiology and Biotechnology. 93: 1769–1776 (2012).
31. Cao Y, Li X, Li F and Song H. CRISPRi–sRNA: Transcriptional–translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synthetic Biology. 6: 1679–1690 (2017).
32. Cao Y, Song M, Li F, Li C, Lin X, Chen Y, Chen Y, Xu J, Ding Q and Song H. A synthetic plasmid toolkit for Shewanella oneidensis MR-1. Frontiers in Microbiology. 10: 410 (2019).
33. Carlson R. Estimating the biotech sector’s contribution to the US economy. Nature Biotechnology. 34: 247–255 (2016).
34. Carte J, Wang R, Li H, Terns RM and Terns MP. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & Development. 22: 3489–3496 (2008).
35. Castaño-Cerezo S, Pastor JM, Renilla S, Bernal V, Iborra JL and Cánovas M. An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microbial Cell Factories. 8: 1–19 (2009).
36. Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O and Ladak Y. N., Awan, AR, Gilbert, C., Stan, GB, & Ellis, T.(2018). Burden-driven feedback control of gene expression. Nature Methods, 15 (5), 387-393.
37. Chang P, Chen GS, Chu H-Y, Lu KW and Shen CR. Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. Journal of Biotechnology. 249: 73–81 (2017).
38. Chao R, Mishra S, Si T and Zhao H. Engineering biological systems using automated biofoundries. Metabolic Engineering. 42: 98–108 (2017).
39. Chen Y, Cheng M, Feng X, Niu X, Song H and Cao Y. Genome editing by CRISPR/Cas12 recognizing AT-rich PAMs in Shewanella oneidensis MR-1. ACS Synthetic Biology. 11: 2947–2955 (2022a).
40. Chen Y, Cheng M, Li Y, Wang L, Fang L, Cao Y and Song H. Highly efficient multiplex base editing: One-shot deactivation of eight genes in Shewanella oneidensis MR-1. Synthetic and Systems Biotechnology. 8: 1–10 (2023).
41. Chen FY-H, Jung H-W, Tsuei C-Y and Liao JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell. 182: 933-946.e14 (2020a).
42. Chen Y, Niu X, Cheng M, Wang L, Sun P, Song H and Cao Y. CRISPR/dCas9-RpoD-mediated simultaneous transcriptional activation and repression in Shewanella oneidensis MR-1. ACS Synthetic Biology: (2022b).
43. Chen J, Wang Y, Guo X, Rao D, Zhou W, Zheng P, Sun J and Ma Y. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels. 13: 1–13 (2020b).
44. Chen S, Zhang X, He M and Li J. Degradation of PGA, prepared by reactive extrusion polymerization, in water, humid, and dry air, and in a vacuum. Journal of Materials Research. 35: 1846–1856 (2020c).
45. Cheng L, He R-L, Min D, Li W-W, Liu D-F and Yu H-Q. Engineering a rhamnose-inducible system to enhance the extracellular electron transfer ability of Shewanella genus for improved Cr (VI) reduction. ACS ES&T Engineering. 1: 842–850 (2021).
46. Chiang C-J, Hu M-C and Chao Y-P. A strategy to improve production of recombinant proteins in Escherichia coli based on a glucose–glycerol mixture and glutamate. Journal of Agricultural and Food Chemistry. 68: 8883–8889 (2020).
47. Choi J-M, Han S-S and Kim H-S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances. 33: 1443–1454 (2015).
48. Choi KR, Jiao S and Lee SY. Metabolic engineering strategies toward production of biofuels. Current Opinion in Chemical Biology. 59: 1–14 (2020).
49. Choi H-P, Lee Y-M, Yun C-W and Sung H-C. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. Journal of Microbiology and Biotechnology. 18: 1136–1140 (2008).
50. Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK and Cate JH. Bypassing the pentose phosphate pathway: towards modular utilization of xylose. PloS One. 11: e0158111 (2016).
51. Choorit W, Saikeur A, Chodok P, Prasertsan P and Kantachote D. Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. Journal of Bioscience and Bioengineering. 111: 658–664 (2011).
52. Chu CC. Hydrolytic degradation of polyglycolic acid: tensile strength and crystallinity study. Journal of Applied Polymer Science. 26: 1727–1734 (1981).
53. Claassens NJ. A warm welcome for alternative CO2 fixation pathways in microbial biotechnology. Microbial Biotechnology. 10: 31 (2017).
54. Cole JA. Synthetic biology: old wine in new bottles with an emerging language that ranges from the sublime to the ridiculous? FEMS Microbiology Letters. 351: 113–115 (2014).
55. Corts AD, Thomason LC, Gill RT and Gralnick JA. Efficient and precise genome editing in Shewanella with recombineering and CRISPR/Cas9-mediated counter-selection. ACS Synthetic Biology. 8: 1877–1889 (2019a).
56. Corts AD, Thomason LC, Gill RT and Gralnick JA. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Scientific Reports. 9: 39 (2019b).
57. Cotton CA, Edlich-Muth C and Bar-Even A. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation. Current Opinion in Biotechnology. 49: 49–56 (2018).
58. Cruz-García C, Murray AE, Rodrigues JL, Gralnick JA, McCue LA, Romine MF, Löffler FE and Tiedje JM. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensisMR-1. BMC Microbiology. 11: 1–14 (2011).
59. Cui Z, Jiang Z, Zhang J, Zheng H, Jiang X, Gong K, Liang Q, Wang Q and Qi Q. Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. Journal of Agricultural and Food Chemistry. 67: 1478–1483 (2019).
60. Cunningham L, Gruer MJ, Guest JR. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology, 143: 3795-3805 (1997).
61. Dellomonaco C, Clomburg JM, Miller EN and Gonzalez R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature, 476: 355-359 (2011).
62. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471: 602–607 (2011).
63. Deng Y, Ma N, Zhu K, Mao Y, Wei X and Zhao Y. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metabolic Engineering. 46: 28–34 (2018).
64. Deng Y, Mao Y and Zhang X. Metabolic engineering of E. coli for efficient production of glycolic acid from glucose. Biochemical Engineering Journal. 103: 256–262 (2015).
65. Derby HA and Hammer BW. Bacteriology of butter IV. Bacteriological studies on surface taint butter. (2017).
66. Ding W, Weng H, Du G, Chen J and Kang Z. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. Journal of Industrial Microbiology and Biotechnology. 44: 1127–1135 (2017).
67. Dischert W and Soucaille P. Method for producing high amount of glycolic acid by fermentation. US patent: US8945888B2 (2015).
68. Dumon-Seignovert L, Cariot G and Vuillard L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21 (DE3), C41 (DE3), and C43 (DE3). Protein Expression and Purification. 37: 203–206 (2004).
69. Effendi SSW, Tan S-I, Ting W-W and Ng I-S. Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. International Journal of Biological Macromolecules. 167: 326–334 (2021).
70. El-Metwally IM, Sadak MS and Saudy HS. Stimulation effects of glutamic and 5-aminolevulinic acids on photosynthetic pigments, physio-biochemical constituents, antioxidant activity, and yield of peanut. Gesunde Pflanzen: 1–10 (2022).
71. Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MA. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synthetic Biology, 6: 710-720 (2017).
72. Enjalbert B, Millard P, Dinclaux M, Portais J-C and Létisse F. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Scientific Reports. 7: 1–11 (2017).
73. Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X and Wang Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid: production of 5-aminolevulinic acid. Biotechnology and Bioengineering. 113: 1284–1293 (2016).
74. Firdaus FB. Extraction of glycolic acid from natural sources. 24 (2012).
75. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G and Reed JL. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology. 6: 592–603 (2008).
76. Fu W, Lin J and Cen P. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Applied Microbiology and Biotechnology. 75: 777–782 (2007).
77. Fu W, Lin J and Cen P. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Applied Biochemistry and Biotechnology. 160: 456–466 (2010).
78. Gao W, Liu Y, Giometti CS, Tollaksen SL, Khare T, Wu L, Klingeman DM, Fields MW and Zhou J. Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics. 7: 1–13 (2006).
79. Gao H, Wang X, Yang ZK, Chen J, Liang Y, Chen H, Palzkill T and Zhou J. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis. PLoS One. 5: e15295 (2010).
80. Gao H, Wang X, Yang ZK, Palzkill T and Zhou J. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genomics. 9: 1–17 (2008).
81. Ge F, Li X, Ge Q, Zhu D, Li W, Shi F and Chen H. Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production. AMB Express. 11: 1–12 (2021).
82. Göktürk E, Pemba AG and Miller SA. Polyglycolic acid from the direct polymerization of renewable C1 feedstocks. Polymer Chemistry. 6: 3918–3925 (2015).
83. Golitsch F, Bücking C and Gescher J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosensors and Bioelectronics. 47: 285–291 (2013).
84. Gomaa OM, Fapetu S, Kyazze G and Keshavarz T. The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions. World Journal of Microbiology and Biotechnology. 33: 56 (2017).
85. Gong F, Liu G, Zhai X, Zhou J, Cai Z and Li Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnology for Biofuels. 8: 86 (2015).
86. Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M and Xu Z-H. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microbial Cell Factories. 11: 1–18 (2012).
87. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH and Kim KS. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences. 103: 11358–11363 (2006).
88. Gorochowski TE, Avcilar-Kucukgoze I, Bovenberg RA, Roubos JA and Ignatova Z. A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synthetic Biology. 5: 710–720 (2016).
89. Gosavi G, Yan F, Ren B, Kuang Y, Yan D, Zhou X and Zhou H. Applications of CRISPR technology in studying plant-pathogen interactions: overview and perspective. Phytopathology Research. 2: 1–9 (2020).
90. Gu L, Yuan H, Lv X, Li G, Cong R, Li J, Du G and Liu L. High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli. Enzyme and Microbial Technology. 134: 109488 (2020).
91. Hajimorad M and Gralnick JA. Towards enabling engineered microbial-electronic systems: RK2-based conjugal transfer system for Shewanella synthetic biology. Electronics Letters. 52: 426–428 (2016).
92. Hajimorad M and Gralnick JA. Plasmid copy number variation of a modular vector set in Shewanella oneidensis MR-1. pp. 2372–2375. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE (2020).
93. Harris HW, El-Naggar MY, Bretschger O, Ward MJ, Romine MF, Obraztsova AY and Nealson KH. Electrokinesis is a microbial behavior that requires extracellular electron transport. Proceedings of the National Academy of Sciences. 107: 326–331 (2010).
94. Hashemi A. CRISPR–Cas9/CRISPRi tools for cell factory construction in E. coli. World Journal of Microbiology and Biotechnology. 36: 1–13 (2020).
95. Hau HH and Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annual Review of Microbiology. 61: 237–258 (2007).
96. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K and Doudna JA. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science. 329: 1355–1358 (2010).
97. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N and Methe B. Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nature Biotechnology. 20: 1118–1123 (2002).
98. Hirose A, Kasai T, Aoki M, Umemura T, Watanabe K and Kouzuma A. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nature Communications. 9: 1083 (2018).
99. Hirose A, Kasai T, Koga R, Suzuki Y, Kouzuma A and Watanabe K. Understanding and engineering electrochemically active bacteria for sustainable biotechnology. Bioresources and Bioprocessing. 6: 10 (2019).
100. Horvath P and Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 327: 167–170 (2010).
101. Howard EC, Hamdan LJ, Lizewski SE and Ringeisen BR. High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1. FEMS Microbiology Letters. 327: 9–14 (2012).
102. Hu H, Li J, Tian Y, Chen C, Li F, Ying WB, Zhang R and Zhu J. Experimental and theoretical study on glycolic acid provided fast bio/seawater-degradable poly (butylene succinate-co-glycolate). ACS Sustainable Chemistry & Engineering. 9: 3850–3859 (2021).
103. Hu G, Li Y, Ye C, Liu L and Chen X. Engineering microorganisms for enhanced CO2 sequestration. Trends in Biotechnology. 37: 532–547 (2019).
104. Hu G, Zhou J, Chen X, Qian Y, Gao C, Guo L, Xu P, Chen W, Chen J, Li Y and Liu L. Engineering synergetic CO2-fixing pathways for malate production. Metabolic Engineering. 47: 496–504 (2018).
105. Huang BC, Yi Y-C, Chang J-S and Ng I-S. Mechanism study of photo-induced gold nanoparticles formation by Shewanella oneidensis MR-1. Scientific Reports. 9: 7589 (2019).
106. Hunt I. From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expression and Purification. 40: 1–22 (2005).
107. Hunt KA, Flynn JM, Naranjo B, Shikhare ID and Gralnick JA. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. Journal of Bacteriology. 192: 3345–3351 (2010).
108. Ikeda S, Takamatsu Y, Tsuchiya M, Suga K, Tanaka Y, Kouzuma A and Watanabe K. Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays in Biochemistry. 65: 355–364 (2021).
109. Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology. 169: 5429–5433 (1987).
110. Janda JM and Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews. 23: 35–73 (2010).
111. Jansen R, Embden JD van, Gaastra W and Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology. 43: 1565–1575 (2002).
112. Jem KJ and Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research. 3: 60–70 (2020).
113. Jeon J-M, Park H, Seo H-M, Kim J-H, Bhatia SK, Sathiyanarayanan G, Song H-S, Park S-H, Choi K-Y and Sang B-I. Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess and Biosystems Engineering. 38: 2147–2154 (2015).
114. Jeon J-M, Song H-S, Lee D-G, Hong JW, Hong YG, Moon Y-M, Bhatia SK, Yoon J-J, Kim W and Yang Y-H. Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. Bioprocess and Biosystems Engineering. 41: 1195–1204 (2018).
115. Jhamb K and Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresource Technology. 123: 135–143 (2012).
116. Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology. 31: 233–239 (2013).
117. Jiang M, Zheng X and Chen Y. Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process. Water Research. 169: 115242 (2020).
118. Jin P, Kang Z, Zhang J, Zhang L, Du G and Chen J. Combinatorial evolution of enzymes and synthetic pathways using one-step PCR. ACS Synthetic Biology. 5: 259–268 (2016).
119. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 337: 816–821 (2012).
120. Jun Y, Zhu L, Fu Weiqi, Lin Y, Lin J and Cen P. Improved 5-aminolevulinic acid production with recombinant Escherichia coli by a short-term dissolved oxygen shock in fed-batch fermentation. Chinese Journal of Chemical Engineering. 21: 1291–1295 (2013).
121. Jung S, Yang K, Lee D-E and Back K. Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Science. 167: 789–795 (2004).
122. Kabir MM and Shimizu K. Metabolic regulation analysis of icd-gene knockout Escherichia coli based on 2D electrophoresis with MALDI-TOF mass spectrometry and enzyme activity measurements. Applied Microbiology and Biotechnology. 65: 84–96 (2004).
123. Kampmann M. CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology. 16: 465–480 (2020).
124. Kang Z, Ding W, Gong X, Liu Q, Du G and Chen J. Recent advances in production of 5-aminolevulinic acid using biological strategies. World Journal of Microbiology and Biotechnology. 33: 200 (2017).
125. Kang NK, Kim M, Baek K, Chang YK, Ort DR and Jin Y-S. Photoautotrophic organic acid production: Glycolic acid production by microalgal cultivation. Chemical Engineering Journal. 433: 133636 (2022).
126. Kao P-H and Ng I-S. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresource Technology. 245: 1527–1537 (2017).
127. Kars G and Ceylan A. Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides OU 001 in a biorefinery concept. International Journal of Hydrogen Energy. 38: 5573–5579 (2013).
128. Kasai T, Kouzuma A, Nojiri H and Watanabe K. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiology. 15: 68 (2015).
129. Kasai T, Suzuki Y, Kouzuma A and Watanabe K. Roles of d-lactate dehydrogenases in the anaerobic growth of Shewanella oneidensis MR-1 on sugars. Applied and Environmental Microbiology. 85: e02668-18 (2019).
130. Kaur J, Kumar A and Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules. 106: 803–822 (2018).
131. Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, van der Laan G, Cibin G, Gianolio D, Haigh SJ, Pattrick RAD, Turner NJ and Lloyd JR. Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis : Application for Click Chemistry. Small. 14: 1703145 (2018).
132. Kipf E, Koch J, Geiger B, Erben J, Richter K, Gescher J, Zengerle R and Kerzenmacher S. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresource technology. 146: 386–392 (2013).
133. Kitano H. Systems biology: a brief overview. science. 295: 1662–1664 (2002).
134. Ko Y-S, Kim JW, Lee JA, Han T, Kim GB, Park JE and Lee SY. Tools and strategies of systems metabolic engineering for the development of Microbial Cell Factories for chemical production. Chemical Society Reviews. 49: 4615–4636 (2020).
135. Ko YJ, You SK, Kim M, Lee E, Shin SK, Park HM, Oh Y and Han SO. Enhanced Production of 5-aminolevulinic Acid via Flux Redistribution of TCA Cycle toward l-Glutamate in Corynebacterium glutamicum. Biotechnology and Bioprocess Engineering. 24: 915–923 (2019).
136. Koivistoinen OM, Kuivanen J, Barth D, Turkia H, Pitkänen J-P, Penttilä M and Richard P. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microbial Cell Factories. 12: 1–16 (2013).
137. Koonin EV, Makarova KS and Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current opinion in microbiology. 37: 67–78 (2017).
138. Kotloski NJ and Gralnick JA. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio. 4: e00553-12 (2013).
139. Kotnik T, Frey W, Sack M, Meglič SH, Peterka M and Miklavčič D. Electroporation-based applications in biotechnology. Trends in biotechnology. 33: 480–488 (2015).
140. Kouzuma A, Kasai T, Hirose A and Watanabe K. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Frontiers in microbiology. 6: 609 (2015).
141. Krishnan S and Chadha A. Microbial Synthesis of Gold Nanoparticles and Their Applications as Catalysts. pp. 1–28. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Kharissova O.V., Martínez L.M.T. and Kharisov B.I.(eds.). Springer International Publishing, Cham (2020).
142. Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H and Suzuki H. γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. Journal of Biological Chemistry. 283: 19981–19990 (2008).
143. Kwon S-K, Kim SK, Lee D-H and Kim JF. Comparative genomics and experimental evolution of Escherichia coli BL21 (DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction. Scientific reports. 5: 1–13 (2015).
144. Lane S, Dong J and Jin Y-S. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. Bioresource technology. 260: 380–394 (2018).
145. Lanka E and Wilkins BM. DNA processing reactions in bacterial conjugation. Annual review of biochemistry. 64: 141–169 (1995).
146. Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA and Petzold CJ. Machine learning for metabolic engineering: A review. Metabolic Engineering. 63: 34–60 (2021).
147. Lee SS, Choi J and Woo HM. Bioconversion of xylose to ethylene glycol and glycolate in engineered Corynebacterium glutamicum. ACS omega. 4: 21279–21287 (2019).
148. Lee S, Kim D-H and Kim K-W. The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere. 194: 515–522 (2018).
149. Leung DHL, Lim YS, Uma K, Pan G-T, Lin J-H, Chong S and Yang TC-K. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell—a Mini Review. Applied biochemistry and biotechnology. 193: 1170–1186 (2021).
150. Lewis KM and Ke A. Building the class 2 CRISPR-Cas arsenal. Molecular cell. 65: 377–379 (2017).
151. Li W, Chen J, Liu C-X, Yuan Q-P and Li Z-J. Microbial production of glycolate from acetate by metabolically engineered Escherichia coli. Journal of Biotechnology. 291: 41–45 (2019).
152. Li Z, Dong Y, Liu Y, Cen X, Liu D and Chen Z. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1, 3-propanediol from glucose and xylose. Metabolic Engineering: (2022a).
153. Li Y, Fang L, Li Y, Cao Y and Song H. Transcriptome analysis to identify crucial genes for reinforcing flavins-mediated extracellular electron transfer in Shewanella oneidensis. Frontiers in microbiology: 1953 (2022b).
154. Li Q, Feng X-L, Li T-T, Lu X-R, Liu Q-Y, Han X, Feng Y-J, Liu Z-Y, Zhang X-J and Xiao X. Anaerobic decolorization and detoxification of cationic red X-GRL by Shewanella oneidensis MR-1. Environmental Technology. 39: 2382–2389 (2018a).
155. Li F, Li Y-X, Cao Y-X, Wang L, Liu C-G, Shi L and Song H. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nature Communications. 9: 3637 (2018b).
156. Li Y, Li Y, Chen Y, Cheng M, Yu H, Song H and Cao Y. Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis. Biotechnology and Bioengineering. 119: 2806–2818 (2022c).
157. Li F, Li Y, Sun L, Chen X, An X, Yin C, Cao Y, Wu H and Song H. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1. ACS Synthetic Biology. 7: 885–895 (2018c).
158. Li F, Li Y, Sun L, Li X, Yin C, An X, Chen X, Tian Y and Song H. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnology for Biofuels. 10: 196 (2017).
159. Li YH, Ou-Yang FY, Yang CH and Li SY. The coupling of glycolysis and the RuBisCo-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Bioresource Technology, 187: 189-197 (2015).
160. Li Q, Ren J-Q, Li Q, Di J-H, Ma C and He Y. Sustainable Conversion of Biomass-Derived d-Xylose to Furfuryl Alcohol in a Deep Eutectic Solvent–Water System. ACS Sustainable Chemistry & Engineering. 9: 10299–10308 (2021).
161. Li J, Tang Q, Li Y, Fan Y-Y, Li F-H, Wu J-H, Min D, Li W-W, Lam PK and Yu H-Q. Rediverting electron flux with an engineered CRISPR-ddAsCpf1 system to enhance the pollutant degradation capacity of Shewanella oneidensis. Environmental Science & Technology. 54: 3599–3608 (2020).
162. Li F, Yin C, Sun L, Li Y, Guo X and Song H. Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnology Journal. 13: 1700491 (2018d).
163. Li C, Zou Y, Jiang T, Zhang J and Yan Y. Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metabolic Engineering: (2022d).
164. Liang J, Li W, Zhang H, Jiang X, Wang L, Liu X and Shen J. Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process. Chemical Engineering Journal. 338: 176–183 (2018).
165. Lin T, Bai X, Hu Y, Li B, Yuan Y-J, Song H, Yang Y and Wang J. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell. AIChE Journal. 63: 1830–1838 (2017).
166. Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, Posfai G and Gyorfy Z. Enhancing the translational capacity of E. coli by resolving the codon bias. ACS synthetic biology. 7: 2656–2664 (2018).
167. Liu Y and Nielsen J. Recent trends in metabolic engineering of microbial chemical factories. Current opinion in biotechnology. 60: 188–197 (2019).
168. Liu J, Ye Z, Wu H, Liu J and Gong Y. Overexpression of hemA and hemL in Bacillus subtilis Promotes Overexpression of 5-aminolevulinic Acid. Indian J Anim Res. 54: (2020).
169. Liu S, Zhang G, Li X and Zhang J. Microbial production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology. 98: 7349–7357 (2014).
170. Liu S, Zheng Z, Tie J, Kang J, Zhang G and Zhang J. Impacts of Fe2+ on 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment by regulating nif gene expression. Journal of Environmental Sciences. 70: 11–19 (2018).
171. Long HF and Hammer BW. Classification of the organism important in dairy products: III. Pseudomonas putrefaciens (Research Bulletin 285, January 1941). State College of Agriculture Experiment Station and Mechanic Arts, Iowa (1941).
172. Long S, Liu B, Gong J, Wang R, Gao S, Zhu T, Guo H, Liu T and Xu Y. 5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue. Plant Physiology and Biochemistry. 190: 248–261 (2022).
173. Lopatkin AJ and Collins JJ. Predictive biology: modelling, understanding and harnessing microbial complexity. Nature Reviews Microbiology. 18: 507–520 (2020).
174. Lou J, Zhu L, Wu M, Yang L, Lin J and Cen P. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. Journal of Zhejiang University SCIENCE B. 15: 491–499 (2014).
175. Lovley DR. Electromicrobiology. Annual review of microbiology. 66: 391–409 (2012).
176. Luo Z, Pan F, Zhu Y, Du S, Yan Y, Wang R, Li S and Xu H. Synergistic Improvement of 5-Aminolevulinic Acid Production with Synthetic Scaffolds and System Pathway Engineering. ACS Synthetic Biology. 11: 2766–2778 (2022a).
177. Luo Y, Su A, Yang J, Yu Q, Wang E and Yuan H. Production of 5-aminolevulinic acid from hydrolysates of cassava residue and fish waste by engineered Bacillus cereus PT1. Microbial Biotechnology: (2022b).
178. Luong HT, Nguyen CX, Lam TT, Nguyen T-H, Dang Q-L, Lee J-H, Hur H-G, Nguyen HT and Ho CT. Antibacterial effect of copper nanoparticles produced in a Shewanella -supported non-external circuit bioelectrical system on bacterial plant pathogens. RSC Advances. 12: 4428–4436 (2022).
179. MacDonell MT and Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Systematic and applied microbiology. 6: 171–182 (1985).
180. Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM and Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. Journal of Neuro-Oncology. 141: 595–607 (2019).
181. Marín M, Fernández-Calero T and Ehrlich R. Protein folding and tRNA biology. Biophysical Reviews. 9: 573–588 (2017).
182. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA and Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences. 105: 3968–3973 (2008).
183. Martínez-Alonso M, García-Fruitós E, Ferrer-Miralles N, Rinas U and Villaverde A. Side effects of chaperone gene co-expression in recombinant protein production. Microbial Cell Factories. 9: 1–6 (2010).
184. Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S and Bolivar F. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microbial Cell Factories. 11: 46 (2012).
185. Mauzerall D and Granick S. The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine. J. biol. Chem. 219: 435–446 (1956).
186. Meyer TE, Tsapin AI, Vandenberghe I, De Smet L, Frishman D, Nealson KH, Cusanovich MA and Van Beeumen JJ. Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. Omics: a journal of integrative biology. 8: 57–77 (2004).
187. Min D, Cheng L, Zhang F, Huang X-N, Li D-B, Liu D-F, Lau T-C, Mu Y and Yu H-Q. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environmental science & technology. 51: 5082–5089 (2017).
188. Miscevic D, Mao J, Kefale T, Abedi D, Moo‐Young M and Perry Chou C. Strain engineering for high‐level 5‐aminolevulinic acid production in Escherichia coli. Biotechnology and Bioengineering. 118: 30–42 (2021).
189. Mojica FJ, Díez-Villaseñor C, Soria E and Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular microbiology. 36: 244–246 (2000).
190. Myers CR and Myers JM. Replication of plasmids with the p15A origin in Shewanella putrefaciens MR-1. Letters in applied microbiology. 24: 221–225 (1997).
191. Myers JM and Myers CR. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. Journal of bacteriology. 182: 67–75 (2000).
192. Myers CR and Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 240: 1319–1321 (1988).
193. Nagy C, Thiel K, Mulaku E, Mustila H, Tamagnini P, Aro E-M, Pacheco CC and Kallio P. Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microbial Cell Factories. 20: 1–18 (2021).
194. Nakagawa G, Kouzuma A, Hirose A, Kasai T, Yoshida G and Watanabe K. Metabolic Characteristics of a glucose-utilizing Shewanella oneidensis strain grown under electrode-respiring conditions. PLOS ONE. 10: e0138813 (2015).
195. Nealson KH and Scott J. Ecophysiology of the genus Shewanella. The Prokaryotes. 6: 1133–1151 (2006).
196. Ng I-S, Guo Y, Zhou Y, Wu J-W, Tan S-I and Yi Y-C. Turn on the Mtr pathway genes under pLacI promoter in Shewanella oneidensis MR-1. Bioresources and Bioprocessing. 5: 35 (2018).
197. Nielsen J. Metabolic engineering. Applied Microbiology and Biotechnology. 55: 263–283 (2001).
198. Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D and Voigt CA. Genetic circuit design automation. Science. 352: aac7341 (2016).
199. Nielsen J and Keasling JD. Engineering cellular metabolism. Cell. 164: 1185–1197 (2016).
200. Nimje VR, Chen C-Y, Chen H-R, Chen C-C, Huang YM, Tseng M-J, Cheng K-C and Chang Y-F. Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis. Bioresource Technology. 104: 315–323 (2012).
201. Noh MH, Lim HG, Park S, Seo SW and Jung GY. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metabolic Engineering. 43: 1–8 (2017a).
202. Noh M, Yoo SM, Kim WJ and Lee SY. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Systems. 5: 418–426 (2017b).
203. Novoa EM and de Pouplana LR. Speeding with control: codon usage, tRNAs, and ribosomes. Trends in Genetics. 28: 574–581 (2012).
204. Obileke K, Onyeaka H, Meyer EL and Nwokolo N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications. 125: 107003 (2021).
205. Ogawa T, Murakami K, Mori H, Ishii N, Tomita M and Yoshin M. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. Journal of Bacteriology. 189: 1176–1178 (2007).
206. Otero-Muras I and Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metabolic Engineering. 63: 61–80 (2021).
207. OzAwA K, YAsUKAwA F, Fujiwara Y and AkUTsU H. A simple, rapid, and highly efficient gene expression system for multiheme cytochromes c. Bioscience, Biotechnology, and Biochemistry. 65: 185–189 (2001).
208. Park S, Kim H, Cho S, You G, Oh HB, Han JH and Lee J. Enhanced incorporation of gaseous CO2 to succinate by a recombinant Escherichia coli W3110. Biotechnology and Bioprocess Engineering. 24: 103–108 (2019).
209. Park D and Zeikus J. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied Microbiology and Biotechnology. 59: 58–61 (2002).
210. Pereira B, Li Z-J, De Mey M, Lim CG, Zhang H, Hoeltgen C and Stephanopoulos G. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metabolic Engineering. 34: 80–87 (2016).
211. Pham DN and Kim C-J. A novel two-stage pH control strategy for the production of 5-aminolevulinic acid using recombinant Streptomyces coelicolor. Biotechnology and Bioprocess Engineering. 26: 669–676 (2021).
212. Pickar-Oliver A and Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nature reviews Molecular Cell Biology. 20: 490–507 (2019).
213. Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS and Fredrickson JK. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Applied and Environmental Microbiology. 77: 8234–8240 (2011).
214. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP and Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 184: 844 (2021).
215. Qiu D, Xie M, Dai J, An W, Wei H, Tian C, Kempher ML, Zhou A, He Z and Gu B. Differential regulation of the two ferrochelatase paralogues in Shewanella loihica PV-4 in response to environmental stresses. Applied and Environmental Microbiology. 82: 5077–5088 (2016).
216. Rachkevych N, Sybirna K, Boyko S, Boretsky Y and Sibirny A. Improving the efficiency of plasmid transformation in Shewanella oneidensis MR-1 by removing ClaI restriction site. Journal of Microbiological Methods. 99: 35–37 (2014).
217. Rajput VD, Minkina T, Kimber RL, Singh VK, Shende S, Behal A, Sushkova S, Mandzhieva S and Lloyd JR. Insights into the biosynthesis of nanoparticles by the genus Shewanella. Applied and Environmental Microbiology. 87: e01390-21 (2021).
218. Rhaman MS, Imran S, Karim MdM, Chakrobortty J, Mahamud MdA, Sarker P, Tahjib-Ul-Arif Md, Robin AHK, Ye W, Murata Y and Hasanuzzaman M. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. Plant Cell Reports. 40: 1451–1469 (2021).
219. Rosano GL, Morales ES and Ceccarelli EA. New tools for recombinant protein production in Escherichia coli : A 5‐year update. Protein Science. 28: 1412–1422 (2019).
220. Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA and Angenent LT. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresource Technology. 102: 2623–2628 (2011).
221. Rujnić-Sokele M and Pilipović A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Management & Research. 35: 132–140 (2017).
222. Salusjärvi L, Havukainen S, Koivistoinen O and Toivari M. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Applied Microbiology and Biotechnology. 103: 2525–2535 (2019).
223. Salusjärvi L, Toivari M, Vehkomäki M-L, Koivistoinen O, Mojzita D, Niemelä K, Penttilä M and Ruohonen L. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 101: 8151–8163 (2017).
224. Samantaray PK, Little A, Haddleton DM, McNally T, Tan B, Sun Z, Huang W, Ji Y and Wan C. Poly (glycolic acid)(PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry. 22: 4055–4081 (2020).
225. Sanko V, Sahin I, Aydemir Sezer U and Sezer S. A versatile method for the synthesis of poly (glycolic acid): high solubility and tunable molecular weights. Polymer Journal. 51: 637–647 (2019).
226. Santoro C, Arbizzani C, Erable B and Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources. 356: 225–244 (2017).
227. Santos-Navarro FN, Vignoni A, Boada Y and Picó J. RBS and promoter strengths determine the cell-growth-dependent protein mass fractions and their optimal synthesis rates. ACS Synthetic Biology. 10: 3290–3303 (2021).
228. Sasaki K, Watanabe M and Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology. 58: 23–29 (2002).
229. Sauer U, Canonaco F, Heri S, Perrenoud A and Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry. 279: 6613–6619 (2004).
230. Segall-Shapiro TH, Sontag ED and Voigt CA. Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology. 36: 352–358 (2018).
231. Shah P and Gilchrist MA. Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLoS Genetics. 6: e1001128 (2010).
232. Sharma G, Sharma AR, Bhattacharya M, Lee S-S and Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Molecular Therapy. 29: 571–586 (2021).
233. Sharma P, Verma A, Sidhu RK and Pandey OP. Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology. 168: 147–151 (2005).
234. Shewan JM, Hobbs G and Hodgkiss W. A determinative scheme for the identification of certain genera of Gram-negative bacteria, with special reference to the Pseudomonadaceae. Journal of Applied Bacteriology. 23: 379–390 (1960).
235. Shih I-T, Yi Y-C and Ng I-S. Plasmid-free system and modular design for efficient 5-aminolevulinic acid production by engineered Escherichia coli. Applied Biochemistry and Biotechnology. 193: 2858–2871 (2021).
236. Si D, Xiong B, Chen L and Shi J. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catalysis. 1: 941–955 (2021).
237. Silva F, Queiroz JA and Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology Advances. 30: 691–708 (2012).
238. Silvis MR, Rajendram M, Shi H, Osadnik H, Gray AN, Cesar S, Peters JM, Hearne CC, Kumar P and Todor H. Morphological and transcriptional responses to CRISPRi knockdown of essential genes in Escherichia coli. MBio. 12: e02561-21 (2021).
239. Sohn YJ, Kang M, Baritugo K-A, Son J, Kang KH, Ryu M-H, Lee S, Sohn M, Jung YJ and Park K. Fermentative high-level production of 5-hydroxyvaleric acid by metabolically engineered Corynebacterium glutamicum. ACS Sustainable Chemistry & Engineering. 9: 2523–2533 (2021).
240. Song H-S, Ramkrishna D, Pinchuk GE, Beliaev AS, Konopka AE and Fredrickson JK. Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth. Metabolic Engineering. 15: 25–33 (2013).
241. Sorokina KN, Taran OP, Medvedeva TB, Samoylova YV, Piligaev AV and Parmon VN. Cellulose biorefinery based on a combined catalytic and biotechnological approach for production of 5-HMF and ethanol. ChemSusChem. 10: 562–574 (2017).
242. Stojanovski BM, Hunter GA, Jahn M, Jahn D and Ferreira GC. Unstable reaction intermediates and hysteresis during the catalytic cycle of 5-aminolevulinate synthase: implications from using pseudo and alternate substrates and a promiscuous enzyme variant. Journal of Biological Chemistry. 289: 22915–22925 (2014).
243. St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB and Shearwin KE. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology. 2: 537–541 (2013).
244. Su T, Guo Q, Zheng Y, Liang Q, Wang Q and Qi Q. Fine-tuning of hemb using crispri for increasing 5-aminolevulinic acid production in Escherichia coli. Frontiers in Microbiology. 10: 1731 (2019).
245. Sun X-M, Zhang Z-X, Wang L-R, Wang J-G, Liang Y, Yang H-F, Tao R-S, Jiang Y, Yang J-J and Yang S. Downregulation of T7 RNA polymerase transcription enhances pET-based recombinant protein production in Escherichia coli BL21 (DE3) by suppressing autolysis. Biotechnology and Bioengineering. 118: 153–163 (2021).
246. Suzuki Y, Kouzuma A and Watanabe K. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid. The Journal of General and Applied Microbiology. 66: 41–45 (2020).
247. Tabor S and Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences. 82: 1074–1078 (1985).
248. Takeya H, Ueki H, Miyanari S, Shimizu T and Kojima M. A new synthesis of 5-aminolevulinic acid via dye-sensitized oxygenation of N-furfurylphthalimide. Journal of Photochemistry and Photobiology A: Chemistry. 94: 167–171 (1996).
249. Tan S-I and Ng I-S. New insight into plasmid-driven T7 RNA polymerase in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synthetic Biology. 9: 613–622 (2020a).
250. Tan S-I and Ng I-S. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. Bioresource Technology. 314: 123785 (2020b).
251. Tan S-I and Ng I-S. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production. Green Chemistry. 23: 4800–4813 (2021).
252. Tan S-I, You S-C, Shih I-T and Ng I-S. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli. Journal of Bioscience and Bioengineering. 129: 387–394 (2020).
253. Tanaka T, Sasaki K, Noparatnaraporn N and Nishio N. Utilization of volatile fatty acids from the anaerobic digestion liquor of sewage sludge for 5-aminolevulinic acid production by photosynthetic bacteria. World Journal of Microbiology and Biotechnology. 10: 677–680 (1994).
254. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS and Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159: 635–646 (2014).
255. Tian T, Kang JW, Kang A and Lee TS. Redirecting metabolic flux via combinatorial multiplex crispri-mediated repression for isopentenol production in Escherichia coli. ACS Synthetic Biology. 8: 391–402 (2019).
256. Ting W-W and Ng I-S. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli. Journal of Bioscience and Bioengineering. 130: 553–562 (2020).
257. Ting W-W and Ng I-S. Adaptive laboratory evolution and metabolic regulation of genetic Escherichia coli W3110 toward low-carbon footprint production of 5-aminolevulinic acid. Journal of the Taiwan Institute of Chemical Engineers. 141: 104612 (2022).
258. Tong SY, Davis JS, Eichenberger E, Holland TL and Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews. 28: 603–661 (2015).
259. Tovilla-Coutiño DB, Momany C and Eiteman MA. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metabolic Engineering. 61: 171–180 (2020).
260. Tran NT, Pham DN and Kim C-J. Production of 5-aminolevulinic acid by recombinant Streptomyces coelicolor expressing hemA from Rhodobacter sphaeroides. Biotechnology and Bioprocess Engineering. 24: 488–499 (2019).
261. Uno M, Phansroy N, Aso Y and Ohara H. Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148. Journal Of Bioscience and Bioengineering. 124: 189–194 (2017).
262. Van der Werf MJ and Zeikus JG. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Applied and Environmental Microbiology. 62: 3560–3566 (1996).
263. Vellingiri A, Song YE, Munussami G, Kim C, Park C, Jeon B-H, Lee S-G and Kim JR. Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. Journal of Chemical Technology & Biotechnology. 94: 2115–2122 (2019).
264. Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler E-M, Baumschlager A, Fischer JE and Hyden P. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nature Communications. 9: 1–13 (2018).
265. Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno MR, Heijnen JJ, Charlier D and Soetaert W. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiology. 11: 70 (2011).
266. Wang J, Jiang T, Milligan S, Zhang J, Li C and Yan Y. Improving isoprenol production via systematic CRISPRi screening in engineered Escherichia coli. Green Chemistry. 24: 6955–6964 (2022a).
267. Wang H, La Russa M and Qi LS. CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry. 85: 227–264 (2016).
268. Wang X, Qin J, Ma C, Wang J, Wang X, Xu S, Feng J, Chen K and Ouyang P. Methanol assimilation with CO2 reduction in Butyribacterium methylotrophicum and development of genetic toolkits for its engineering. ACS Sustainable Chemistry & Engineering. 9: 12079–12090 (2021a).
269. Wang S, Shi L, Yu S, Pang H, Qiu M, Song G, Fu D, Hu B and Wang X. Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. Journal of Environmental Radioactivity. 242: 106798 (2022b).
270. Wang Q, Song X, Tang S and Yu L. Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide. Chemosphere. 243: 125260 (2020).
271. Wang L, Yan S, Yang T, Xu M, Zhang X, Shao M, Li H and Rao Z. Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Sheng Wu Gong Cheng Xue Bao= Chinese Journal of Biotechnology. 37: 4314–4328 (2021b).
272. Way JC, Collins JJ, Keasling JD and Silver PA. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell. 157: 151–161 (2014).
273. Wei L, Zhao J, Wang Y, Gao J, Du M, Zhang Y, Xu N, Du H, Ju J, Liu Q and Liu J. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Metabolic Engineering. 69: 134–146 (2022).
274. West EA, Jain A and Gralnick JA. Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synthetic Biology. 6: 1627–1634 (2017).
275. Woolston BM, Edgar S and Stephanopoulos G. Metabolic engineering: past and future. Annual Review of Chemical and Biomolecular Engineering. 4: 259–288 (2013).
276. Wu Y, Liao W, Dawuda MM, Hu L and Yu J. 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation. 87: 357–374 (2019).
277. Wu J-W and Ng I-S. Biofabrication of gold nanoparticles by Shewanella species. Bioresources and Bioprocessing. 4: 50 (2017).
278. Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T and Zhao X. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply. Frontiers in Bioengineering and Biotechnology. 8: 585 (2020).
279. Xiao X, Li C-X, Peng J-R, Fan Y-Y and Li W-W. Dynamic roles of inner membrane electron-transfer hub of Shewanella oneidensis MR-1 in response to extracellular reduction kinetics. Chemical Engineering Journal. 451: 138717 (2023).
280. Xiao L, Liu F, Lichtfouse E, Zhang P, Feng D and Li F. Methane production by acetate dismutation stimulated by Shewanella oneidensis and carbon materials: An alternative to classical CO2 reduction. Chemical Engineering Journal. 389: 124469 (2020).
281. Xiao W, Wang R-S, Handy DE and Loscalzo J. NAD (H) and NADP (H) redox couples and cellular energy metabolism. Antioxidants & Redox Signaling. 28: 251–272 (2018).
282. Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH and Koffas MAG. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications. 4: 1409 (2013).
283. Xiong W, Lee TC, Rommelfanger S, Gjersing E, Cano M, Maness PC, Ghirardi M and Yu J. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nature Plants. 2: 1-8 (2015).
284. Xu S, Zhang L, Zhou S and Deng Y. Biosensor-based multigene pathway optimization for enhancing the production of glycolate. Applied and Environmental Microbiology. 87: e00113-21 (2021).
285. Xu X, Zhao Q, Wu M, Ding J and Zhang W. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe (III) oxide addition. Bioresource Technology. 225: 402–408 (2017).
286. Xue C, Yu T-H and Ng I-S. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. Journal of the Taiwan Institute of Chemical Engineers. 120: 49–58 (2021).
287. Yang F, Zhang J, Cai Z and Li Y. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO2. AMB Express. 11: 12 (2021).
288. Yang Y, Chen J, Qiu D and Zhou J. Roles of UndA and MtrC of Shewanella putrefaciensW3-18-1 in iron reduction. BMC Microbiology. 13: 1–8 (2013).
289. Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S and Song H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synthetic Biology. 4: 815–823 (2015).
290. Yang Z-N, Hou Y-N, Zhang B, Cheng H-Y, Yong Y-C, Liu W-Z, Han J-L, Liu S-J and Wang A-J. Insights into palladium nanoparticles produced by Shewanella oneidensis MR-1: Roles of NADH dehydrogenases and hydrogenases. Environmental Research. 191: 110196 (2020).
291. Yang P, Liu W, Cheng X, Wang J, Wang Q and Qi Q. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Applied and Environmental Microbiology. 82: 2709–2717 (2016).
292. Yi Y-C and Ng I-S. Establishment of toolkit and T7RNA polymerase/promoter system in Shewanella oneidensis MR-1. Journal of the Taiwan Institute of Chemical Engineers. 109: 8–14 (2020)
293. Yi Y-C and Ng I-S. Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production. Bioresources and Bioprocessing. 8: 13 (2021).
294. Yi Y-C, Shih I-T, Yu T-H, Lee Y-J and Ng I-S. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review. Bioresources and Bioprocessing. 8: 100 (2021a).
295. Yi Y-C, Xue C and Ng I-S. Low-carbon-footprint production of high-end 5-aminolevulinic acid via integrative strain engineering and RuBisCo-equipped Escherichia coli. ACS Sustainable Chemistry & Engineering. 9: 15623–15633 (2021b).
296. Yin Y, Liu C, Zhao G and Chen Y. Versatile mechanisms and enhanced strategies of pollutants removal mediated by Shewanella oneidensis: A review. Journal of Hazardous Materials: 129703 (2022).
297. Yoon J and Woo HM. CRISPR interference–mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production. Biotechnology and Bioengineering. 115: 2067–2074 (2018).
298. Yu X, Cao Y, Chen Y, Qi Z, Chen Q, Wang J and Kong Q. Efficient production of 5-aminolevulinic acid from low-cost and sustainable bioresources of corn by engineered Corynebacterium glutamicum. Bioresource Technology Reports. 20: 101277 (2022a).
299. Yu Y, Shao M, Li D, Fan F, Xu H, Lu F, Bi C, Zhu X and Zhang X. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli. Metabolic Engineering. 61: 152–159 (2020a).
300. Yu T-H, Tan S-I, Yi Y-C, Xue C, Ting W-W, Chang J-J and Ng I-S. New insight into the codon usage and medium optimization toward stable and high-level 5-aminolevulinic acid production in Escherichia coli. Biochemical Engineering Journal. 177: 108259 (2022b).
301. Yu T-H, Yi Y-C, Shih I-T and Ng I-S. Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Applied Biochemistry and Biotechnology. 191: 299–312 (2020b).
302. Yunhai S, Houyong S, Deming L, Qinghua L, Dexing C and Yongchuan Z. Separation of glycolic acid from glycolonitrile hydrolysate by reactive extraction with tri-n-octylamine. Separation and Purification Technology. 49: 20–26 (2006).
303. Zeng Y, Hong Y, Azi F, Liu Y, Chen Y, Guo C, Lin D, Wu Z, Chen W and Xu P. Advanced genome-editing technologies enable rapid and large-scale generation of genetic variants for strain engineering and synthetic biology. Current Opinion in Microbiology. 69: 102175 (2022).
304. Zhan T, Chen Q, Zhang C, Bi C and Zhang X. Constructing a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli. ACS Synthetic Biology. 9: 2600–2609 (2020).
305. Zhang R, Cao Y, Liu W, Xian M and Liu H. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microbial Cell Factories. 16: 1–10 (2017a).
306. Zhang L, Chen J, Chen N, Sun J, Zheng P and Ma Y. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnology Letters. 35: 763–768 (2013).
307. Zhang Q, Hou Z, Ma Q, Mo X, Sun Q, Tan M, Xia L, Lin G, Yang M, Zhang Y, Xu Q, Li Y, Chen N and Xie X. CRISPRi-Based Dynamic Control of Carbon Flow for Efficient N -Acetyl Glucosamine Production and Its Metabolomic Effects in Escherichia coli. Journal of Agricultural and Food Chemistry. 68: 3203–3213 (2020a).
308. Zhang J, Kang Z, Chen J and Du G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports. 5: 8584 (2015).
309. Zhang J, Kang Z, Ding W, Chen J and Du G. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Applied Biochemistry and Biotechnology. 178: 1252–1262 (2016).
310. Zhang C, Li Y, Zhu F, Li Z, Lu N, Li Y, Xu Q and Chen N. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid. Bioresource Technology. 318: 124064 (2020b).
311. Zhang X, Lin Y, Wu Q, Wang Y and Chen G-Q. Synthetic biology and genome-editing tools for improving PHA metabolic engineering. Trends in Biotechnology. 38: 689–700 (2020c).
312. Zhang P, Liu J, Qu Y and Feng Y. Enhanced Shewanella oneidensis MR-1 anode performance by adding fumarate in microbial fuel cell. Chemical Engineering Journal. 328: 697–702 (2017b).
313. Zhang J, Wang Z, Su T, Sun H, Zhu Y, Qi Q and Wang Q. Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation. iScience. 23: 101067 (2020d).
314. Zhang J, Weng H, Zhou Z, Du G and Kang Z. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresource Technology. 274: 353–360 (2019).
315. Zhang J, Wu D, Zhao Y, Liu D, Guo X, Chen Y, Zhang C, Sun X, Guo J, Yuan D, Xiao D, Li F and Song H. Engineering Shewanella oneidensis to efficiently harvest electricity power by co-utilizing glucose and lactate in thin stillage of liquor industry. Science of The Total Environment. 855: 158696 (2023).
316. Zhang Z, Yang Y, Wang Y, Gu J, Lu X, Liao X, Shi J, Kim CH, Lye G, Baganz F and Hao J. Ethylene glycol and glycolic acid production from xylonic acid by Enterobacter cloacae. Microbial Cell Factories. 19: 89 (2020e).
317. Zhang B and Ye B-C. Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production. 3 Biotech. 8: 1–10 (2018).
318. Zhang Y, Zhao Q and Chen B. Reduction and removal of Cr(VI) in water using biosynthesized palladium nanoparticles loaded Shewanella oneidensis MR-1. Science of The Total Environment. 805: 150336 (2022).
319. Zhang J, Zhu C, Sun H and Peng Q. Separation of glycolic acid from glycolonitrile hydrolysate using adsorption technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 520: 391–398 (2017c).
320. Zhao H. Synthetic biology: tools and applications. Academic Press (2013).
321. Zhao R, Ma T, Zhao S, Rong H, Tian Y and Zhu G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chemical Engineering Journal. 382: 122893 (2020).
322. Zhao Z, Qin Z, Xia L, Zhang D, Mela SM and Li Y. The responding and ecological contribution of biofilm-leaves of submerged macrophytes on phenanthrene dissipation in sediments. Environmental Pollution. 246: 357–365 (2019).
323. Zhou Y and Ng I-S. Explored a cryptic plasmid pSXM33 from Shewanella xiamenensis BC01 and construction as the shuttle vector. Biotechnology and bioprocess engineering. 21: 68–78 (2016).
324. Zhou X, Zha M, Cao J, Yan H, Feng X, Chen D and Yang C. Glycolic acid production from ethylene glycol via sustainable biomass energy: integrated conceptual process design and comparative techno-economic–society–environment analysis. ACS Sustainable Chemistry & Engineering. 9: 10948–10962 (2021).
325. Zhu C, Chen J, Wang Y, Wang L, Guo X, Chen N, Zheng P, Sun J and Ma Y. Enhancing 5‐aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnology and Bioengineering. 116: 2018–2028 (2019a).
326. Zhu K, Li G, Wei R, Mao Y, Zhao Y, He A, Bai Z and Deng Y. Systematic analysis of the effects of different nitrogen source and ICDH knockout on glycolate synthesis in Escherichia coli. Journal of biological engineering. 13: 1–13 (2019b).
327. Zhu T, Yao D, Li D, Xu H, Jia S, Bi C, Cai J, Zhu X and Zhang X. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. Biotechnology and Bioengineering. 118: 4699–4707 (2021).
328. Zou Y, Chen T, Feng L, Zhang S, Xing D and Wang Z. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Biotechnology Letters. 39: 1369–1374 (2017).
329. Zou L, Huang Y, Long Z and Qiao Y. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World Journal of Microbiology and Biotechnology. 35: 9 (2019).