研究生: |
徐悅玲 Hsu, Yueh-Ling |
---|---|
論文名稱: |
導入光致變材料之五苯環電晶體的光電效應研究 Studies of photoelectric effects of pentacene thin-film transistors with photochromic materials |
指導教授: |
鄭弘隆
Cheng, Horng-Long |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 有機薄膜電晶體 、光致變材料 、五苯環 、光電效應 、光感測 |
外文關鍵詞: | organic thin-film transistors, photochromic materials, pentacene, photoelectric effects, photosensor |
相關次數: | 點閱:74 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究導入光致變材料對五苯環電晶體的光電效應影響,以高介電常數的氧化鋁搭配聚乙烯基苯酚(poly(4-vinylphenol), PVP)作為介電層、五苯環作為主動層,並在PVP中摻雜光致變材料spiropyran (SP),製作低操作電壓的有機薄膜電晶體,且引入氧電漿處理主動層以優化電晶體性能。
利用吸收光譜、光激螢光光譜、x-ray繞射、表面能、化學分析電子光譜對混摻不同SP比例的PVP薄膜和半導體層進行特性分析,並研究元件電特性對紫外光與可見光的響應。未混摻SP的參考組元件對紫外光幾乎不產生反應,在可見光照射下則會使臨界電壓提前、次臨界擺幅上升,歸因於五苯環的吸收範圍位在可見光波段;而當元件導入SP後則能感測紫外光,且由光感測分析顯示紫外光照射下具激子與偶極矩的效應,相較於可見光環境下則只會有激子的影響,可藉由兩者的不同達到分辨紫外光與可見光的功能。導入SP的五苯環電晶體相較於可見光,對紫外光有較佳光響應,透過氧電漿處理主動層後使電性提升,光響應值增加30倍,並且具有明顯的記憶效應。綜上所述,導入SP之五苯環電晶體具有優異的紫外光感測能力,具有開發紫外光檢測的潛力。
In this study, we investigated the photoelectric effects of pentacene-based organic thin film transistors (OTFTs) with a photochromic material, namely, spiropyran (SP), in the gate dielectric layer. We fabricated low operating voltage OTFTs, in which high-k aluminum oxide (AlOx) combined with SP containing poly(4-vinylphenol) (PVP) was used as hybrid gate dielectrics, and pentacene was used as an active layer. Irradiation-induced structural changes between SP and merocyanine (MR) in the PVP layer were studied. Results revealed a MR structure in the PVP layer that could be successfully converted to the SP form under ultraviolet (UV) or visible irradiation and back again to the MR in the dark. The electrical characteristics of the corresponding OTFTs with PVP/SP buffer layer also showed significant changes upon UV light irradiation; these characteristics differed from those upon visible light irradiation. Compared with visible light irradiation, the present OTFTs with SP acquired superior photoresponse under UV light irradiation. This difference allowed the present OTFTs to distinguish UV and visible lights. The possible origins were further discussed. After oxygen plasma treatment on the active layer, which was used to improve the performance, the devices showed a remarkable memory effect. Consequently, the pentacene-based OTFTs with SP exhibited excellent ability to sense UV light and demonstrated strong potential use for photodetectors.
[1] G. Horowitz, “Organic field-effect transistors”, Adv. Mater., 10, 365, 1998.
[2] A. Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: fieldeffect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 1210-1212, 1986.
[3] Y. Zhao, Y. Guo, Y. Liu, “25th anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors”, Adv. Mater., 25, 5372-5391, 2013.
[4] F. Zhao, C. Wang, X. Zhan, “Morphology control in organic solar cells”, Adv. Energy Mater., 8, 1703147, 2018.
[5] L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, “Organic and solution-processed tandem solar cells with 17.3% efficiency”, Science, 361, 1094-1098, 2018.
[6] J. Zhang, H.S. Tan, X. Guo, A. Facchetti, H. Yan, “Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors”, Nat. Energy, 3, 720-731, 2018.
[7] Y. Wei, Z. Cheng, J. Lin, “An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs”, Chem. Soc. Rev., 48, 310-350, 2019.
[8] C. Bizzarri, E. Spuling, D.M. Knoll, D. Volz, S. Bräse, “Sustainable metal complexes for organic light-emitting diodes (OLEDs)”, Coord. Chem. Rev., 373, 49-82, 2018.
[9] J. Zhang, J. Jin, H. Xu, Q. Zhang, W. Huang, “Recent progress on organic donor–acceptor complexes as active elements in organic field-effect transistors”, J. Mater. Chem. C, 6, 3485-3498, 2018.
[10] J.T.E. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, “Recent progress in the development of n-type organic semiconductors for organic field effect transistors”, J. Mater. Chem. C, 5, 8654-8681, 2017.
[11] C.D. Dimitrakopoulos, P.R.L. Malenfant, “Organic thin film transistorsfor large area electronics”, Adv. Mater., 14, 99-117, 2002.
[12] J.H. Schon, Ch. Kloc, B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors”, Org. Electron., 1, 57-64, 2000.
[13] H. Koezuka, A. Tsumura, T. Ando, “Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699-704, 1987.
[14] H.C. Avila, P. Serrano, A.R.J. Barreto, Z. Ahmed, C.P. Gouvêa, C. Vilanic, R.B. Capaz, C.F.N. Marchiori, M. Cremona, “High hole-mobility of rrP3HT in organic field-effect transistors using low-polarity polyurethane gate dielectric”, Org. Electron., 58, 33-37, 2018.
[15] S. Sanda, T. Nagase, T. Kobayashi, K. Takimiya, Y. Sadamitsu, H. Naito, “High-performance didodecylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating using binary solvent mixtures”, Org. Electron., 58, 306-312, 2018.
[16] L.N. Fu, B. Leng, Y.S. Li, X.K. Gao, “Photoresponsive organic field-effect transistors involving photochromic molecules”, Chin. Chem. Lett., 27, 1319-1329, 2016.
[17] M. Herder et al., “Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor”, Nat. Chem., 4, 675-679, 2012.
[18] Y. Li, H. Zhang, C. Qi, X. Guo, “Light-driven photochromism-induced reversible switching in P3HT-spiropyran hybrid transistors”, J. Mater. Chem., 22, 4261-4265, 2012.
[19] H. Chen, N. Cheng, W. Ma, M. Li, S. Hu, L. Gu, S. Meng, X. Guo, “Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors”, ACS Nano, 10, 436-445, 2016.
[20] M. Yoshida, K. Suemori, S. Uemura, S. Hoshino, N. Takada, T. Kodzasa, T. Kamata, “Development of field-effect transistor-type photorewritable memory using photochromic interface layer”, Jpn. J. Appl. Phys., 49, 04DK09, 2010.
[21] Y. Ishiguro, R. Hayakawa, T. Yasuda, T. Chikyow, Y. Wakayama, “Unique device operations by combining optical-memory effect and electrical-gate modulation in a photochromism-based dual-gate transistor”, ACS Appl. Mater. Interfaces, 5, 9726-9731, 2013.
[22] H. Zhang, H. Chen, W. Ma, J. Hui, S. Meng, W. Xu, D. Zhu, X. Guo, “Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors”, J. Mater. Chem C, 4, 5289-5296, 2016.
[23] F.M. Raymo, S. Giordani, “Signal processing at the molecular level”, J. Am. Chem. Soc., 123, 4651-4652, 2001.
[24] D.A. Parthenopoulos, P.M. Rentzepis, “Three-dimensional optical storage memory”, Science, 245, 843-845, 1989.
[25] Y. Li, H. Zhang, C. Qi, X. Guo, “Light-driven photochromism-induced reversible switching in P3HT-spiropyran hybrid transistors”, J. Mater. Chem., 22, 4261-4265, 2012.
[26] Y. Ishiguro, R. Hayakawa, T. Chikyow, Y. Wakayama, “Optical switching of carrier transport in polymeric transistors with photochromic spiropyran molecules”, J. Mater. Chem. C, 1, 3012-3016, 2013.
[27] Q. Shen, L. Wang, S. Liu, Y. Cao, L. Gan, X. Guo, M.L. Steigerwald, Z. Shuai, Z. Liu, C. Nuckolls, “Photoactive gate dielectrics”, Adv. Mater., 22, 3282-3287, 2010.
[28] P. Lutsyk, K. Janus, J. Sworakowsk, “Photoswitching of an n-type organic field effect transistor by a reversible photochromic reaction in the dielectric film”, J. Phys. Chem. C, 115, 3106-3114, 2011.
[29] P. Lutsyk, K. Janus, J. Sworakowski, A. Kochalska, S. Nešpůrek, “Kinetic study of light-driven processes in photochromic dye-doped polymers used as gate insulators in photoswitchable organic field effect transistors”, Chem. Phys., 404, 22-27, 2012.
[30] H. Zhang, X. Guo, J. Hui, S. Hu, W. Xu, D. Zhu, “Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors”, Nano Lett., 11, 4939-4946, 2011.
[31] H.L. Cheng, Y.S. Mai, W.Y. Chou, L.R. Chang, X.W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films”, Adv. Funct. Mater., 17, 3639-3649, 2007.
[32] A.C. Mayer, A. Kazimirov, G.G. Malliaras, “Dynamics of bimodal growth in pentacene thin films”, Phys. Rev. Lett., 97, 105503, 2006.
[33] R. Hosemann, A.M. Hindeleh, “Structure of crystalline and paracrystalline condensed matter”, J. Macromol. Sci. Part B-Phys, 34, 327-356, 1995.
[34] Y.W. Wang, G.Y. Tseng, L.Y. Chiu, B.R. Lin, Y.Y. Lin, T.W. Haung, W.Y. Chou, L. Horng, H.L. Cheng, “Highly energy-efficient and air-stable organic transistors by an ultrathin hybrid dielectric with large internal voltage generation”, J. Mater. Chem. C, 2, 7752, 2014.
[35] D. Yang, L. Zhang, S.Y. Yang, B.S. Zou, “Influence of the dielectric PMMA layer on the detectivity of pentacene-based photodetector with field-effect transistor configuration in visible region”, IEEE Photonics J., 5, No.6, 2013.
[36] C.S. Lin, Y.J. Lin, “Enhancement of the hole mobility and concentration in pentacene by oxygen plasma treatment”, J. Non-Cryst. Solids, 356, 2820-2823, 2010.
[37] 陳澔宇, “有機薄膜電晶體之電特性研究:電極與主動層後處理效應”, 國立成功大學碩士論文, 2019.
[38] F.D. Angelis, M. Gaspari, A. Procopio, G. Cuda, E.D. Fabrizio, “Direct mass spectrometry investigation on pentacene thin film oxidation upon exposure to air”, Chem. Phys. Lett., 468, 193-196, 2009.
[39] V. Nádaždy, R. Durný, J. Puigdollers, C. Voz, S. Cheylan, K. Gmucová, “Experimental observation of oxygen-related defect state in pentacene thin films”, Appl. Phys. Lett., 90, 092112, 2007.