簡易檢索 / 詳目顯示

研究生: 李倫維
Lee, Lun-Wei
論文名稱: 探討循環拉伸誘導細胞柱狀化的機械生物學機制
Mechanobiological mechanism of cyclic stretch-induced cell columnarization
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 111
中文關鍵詞: 上皮細胞柱狀化細胞骨架重組細胞力學循環拉伸機械力生物學
外文關鍵詞: Epithelial cell columnarization, Cytoskeleton rearrangement, Cellular mechanics, Cyclic stretch, Mechanobiology
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract II 致謝 III Contents IV List of Tables VIII List of Figures IX Abbreviations XII Chapter 1: Introduction 1 1-1 Epithelial cell shape and mechanical stimuli 1 1-1.1 The shape of epithelial cells and functions 1 1-1.2 Mechanical stimuli: The intrinsic forces 2 1-1.3 Mechanical stimuli: The extrinsic forces 3 1-1.4 The correlation between epithelial morphogenesis and mechanical stimulation 3 1-2 Cytoskeletons in epithelial cell shape, polarity, and junction integrity 4 1-2.1 Actin filaments 5 1-2.2 Microtubules 6 1-3 Cell-cell and cell-matrix adhesions in epithelial integrity and mechanosensing 7 1-3.1 Tight junctions 8 1-3.2 Adherens junctions 9 1-3.3 Focal adhesion complex 10 1-4 Mechano-adaptation in epithelial cell behavior and tissue homeostasis 10 1-4.1 The importance of mechano-adaptation 10 1-4.2 Loss of mechanosensing and pathological conditions 11 1-5 Investigating long-term dynamic mechanical stimulation on epithelial morphogenesis 12 1-5.1 Methods for evaluating the effects of mechanical stimulations 12 1-5.2 Application of uniaxial cyclic stretching 13 1-5.3 Objectives 13 Chapter 2: Specific aims 15 Specific aim 1: To verify the geometrical features of columnarized cell shape under CS 15 Specific aim 2: To investigate the mechanism in promoting CS-induced cell columnarization 16 Specific aim 3: To investigate the change of cell mechanics in CS-induced columnarized epithelial cells 17 Chapter 3: Materials and methods 19 3-1 Cell lines and pharmacological treatment 19 3-2 Application of cyclic stretch 20 3-3 Western blotting 20 3-4 Transfection and knockdown 21 3-5 Immunofluorescence staining and microscopy 21 3-6 Cell shape analysis 22 3-7 Tortuosity analysis 22 3-8 Immunofluorescent intensity analysis 23 3-9 Analysis of apical surface stiffness by confocal-coaxial atomic force microscopy (AFM) 23 3-10 Modeling of epithelial cell columnarization 24 3-11 RNA sequencing analysis 26 3-12 Real-time cell analysis (RTCA) 27 3-13 Statistical analysis 27 Chapter 4: Results 28 4-1 Uniaxial cyclic stretch induces columnarization in MDCK epithelial cells 28 4-2 CS-induced cell columnarization is not dependent on cell proliferation and cell density 29 4-3 CS induced actin roof formation and thickening of microtubule network at the apical part of columnarized MDCK cells 30 4-4 Perturbation of cell force transmission ameliorated CS-induced cell columnarization 31 4-5 Inhibition of ZO-1 and actomyosin contractility alleviate CS-induced cell columnarization 32 4-6 Caveolin-1 overexpression augmented CS-induced cell columnarization by strengthening apical junction 34 4-7 Alteration of apical junctional stiffness and myosin contraction activity during cyclic stretch 36 4-8 Mathematical modeling depicts the force changes in CS-induced cell columnarization 37 4-9 Screening the possible signaling pathways that determine CS-induced cell columnarization by using RNA sequencing 39 Chapter 5: Discussion 41 5-1 The role of apical tension and basal tension in CS-induced columnar cell shape development 41 5-2 Synergistic effects of Cav1 overexpression and CS on cell height and columnar morphology 41 5-3 The impact of CS on cell density, proliferation and columnarization 42 5-4 Nuclear reorientation and the role of the LINC complex in CS-induced columnarization 43 5-5 The role of Mechano-adaptation in CS-induced columnarization and its implications 43 5-6 The regulation of focal adhesion complex in CS-induced cell columnarization 44 5-7 The implications of vinculin translocation on cell columnarization 45 5-8 The role of Ecad in promoting columnar shape formation in Cav1-overexpressing MK4 cells 46 5-9 The postulated mechanism of CS-induced cell columnarization 46 Conclusion 48 References 49 Figures 59 Tables 93

    Abercrombie, M. (1970). Contact inhibition in tissue culture. In Vitro, 6(2), 128-142. doi:10.1007/BF02616114
    Alt, S., Ganguly, P., & Salbreux, G. (2017). Vertex models: from cell mechanics to tissue morphogenesis. Philos Trans R Soc Lond B Biol Sci, 372(1720). doi:10.1098/rstb.2015.0520
    An, Q., Han, C., Zhou, Y., Li, F., Li, D., Zhang, X., . . . Kan, Q. (2015). In vitro effects of mitomycin C on the proliferation of the non-small-cell lung cancer line A549. Int J Clin Exp Med, 8(11), 20516-20523. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26884968
    Angulo-Urarte, A., van der Wal, T., & Huveneers, S. (2020). Cell-cell junctions as sensors and transducers of mechanical forces. Biochim Biophys Acta Biomembr, 1862(9), 183316. doi:10.1016/j.bbamem.2020.183316
    Bacallao, R., Antony, C., Dotti, C., Karsenti, E., Stelzer, E. H., & Simons, K. (1989). The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol, 109(6 Pt 1), 2817-2832. doi:10.1083/jcb.109.6.2817
    Bandyopadhyay, A., Rothschild, G., Kim, S., Calderwood, D. A., & Raghavan, S. (2012). Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J Cell Sci, 125(Pt 9), 2172-2184. doi:10.1242/jcs.096214
    Bauer, M. S., Baumann, F., Daday, C., Redondo, P., Durner, E., Jobst, M. A., . . . Lietha, D. (2019). Structural and mechanistic insights into mechanoactivation of focal adhesion kinase. Proc Natl Acad Sci U S A, 116(14), 6766-6774. doi:10.1073/pnas.1820567116
    Bays, J. L., Peng, X., Tolbert, C. E., Guilluy, C., Angell, A. E., Pan, Y., . . . DeMali, K. A. (2014). Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol, 205(2), 251-263. doi:10.1083/jcb.201309092
    Bazellieres, E., Conte, V., Elosegui-Artola, A., Serra-Picamal, X., Bintanel-Morcillo, M., Roca-Cusachs, P., . . . Trepat, X. (2015). Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol, 17(4), 409-420. doi:10.1038/ncb3135
    Beloussov, L. V., Saveliev, S. V., Naumidi, II, & Novoselov, V. V. (1994). Mechanical stresses in embryonic tissues: patterns, morphogenetic role, and involvement in regulatory feedback. Int Rev Cytol, 150, 1-34. doi:10.1016/s0074-7696(08)61535-1
    Borghi, N., Sorokina, M., Shcherbakova, O. G., Weis, W. I., Pruitt, B. L., Nelson, W. J., & Dunn, A. R. (2012). E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A, 109(31), 12568-12573. doi:10.1073/pnas.1204390109
    Bosch-Fortea, M., & Martin-Belmonte, F. (2018). Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol, 50, 42-49. doi:10.1016/j.ceb.2018.01.013
    Brown, T. D. (2000). Techniques for mechanical stimulation of cells in vitro: a review. J Biomech, 33(1), 3-14. doi:10.1016/s0021-9290(99)00177-3
    Budnar, S., & Yap, A. S. (2013). A mechanobiological perspective on cadherins and the actin-myosin cytoskeleton. F1000Prime Rep, 5, 35. doi:10.12703/P5-35
    Carley, E., Stewart, R. M., Zieman, A., Jalilian, I., King, D. E., Zubek, A., . . . King, M. C. (2021). The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. Elife, 10. doi:10.7554/eLife.58541
    Cereijido, M., Contreras, R. G., Shoshani, L., Flores-Benitez, D., & Larre, I. (2008). Tight junction and polarity interaction in the transporting epithelial phenotype. Biochim Biophys Acta, 1778(3), 770-793. doi:10.1016/j.bbamem.2007.09.001
    Chambliss, A. B., Khatau, S. B., Erdenberger, N., Robinson, D. K., Hodzic, D., Longmore, G. D., & Wirtz, D. (2013). The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci Rep, 3, 1087. doi:10.1038/srep01087
    Chan, K. T., Bennin, D. A., & Huttenlocher, A. (2010). Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem, 285(15), 11418-11426. doi:10.1074/jbc.M109.090746
    Chang, F., Kong, S. J., Wang, L., Choi, B. K., Lee, H., Kim, C., . . . Park, K. (2020). Targeting Actomyosin Contractility Suppresses Malignant Phenotypes of Acute Myeloid Leukemia Cells. Int J Mol Sci, 21(10). doi:10.3390/ijms21103460
    Citi, S. (2019). The mechanobiology of tight junctions. Biophys Rev, 11(5), 783-793. doi:10.1007/s12551-019-00582-7
    Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., . . . Hodzic, D. (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol, 172(1), 41-53. doi:10.1083/jcb.200509124
    Cui, Y., Hameed, F. M., Yang, B., Lee, K., Pan, C. Q., Park, S., & Sheetz, M. (2015). Cyclic stretching of soft substrates induces spreading and growth. Nat Commun, 6, 6333. doi:10.1038/ncomms7333
    Davidovich, N., DiPaolo, B. C., Lawrence, G. G., Chhour, P., Yehya, N., & Margulies, S. S. (2013). Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am J Respir Cell Mol Biol, 49(1), 156-164. doi:10.1165/rcmb.2012-0252OC
    Di, X., Gao, X., Peng, L., Ai, J., Jin, X., Qi, S., . . . Luo, D. (2023). Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther, 8(1), 282. doi:10.1038/s41392-023-01501-9
    Dogterom, M., & Koenderink, G. H. (2019). Actin-microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol, 20(1), 38-54. doi:10.1038/s41580-018-0067-1
    Dukes, J. D., Whitley, P., & Chalmers, A. D. (2011). The MDCK variety pack: choosing the right strain. BMC Cell Biol, 12, 43. doi:10.1186/1471-2121-12-43
    Dumbauld, D. W., Lee, T. T., Singh, A., Scrimgeour, J., Gersbach, C. A., Zamir, E. A., . . . Garcia, A. J. (2013). How vinculin regulates force transmission. Proc Natl Acad Sci U S A, 110(24), 9788-9793. doi:10.1073/pnas.1216209110
    Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S., & Julicher, F. (2007). The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol, 17(24), 2095-2104. doi:10.1016/j.cub.2007.11.049
    Fletcher, A. G., Osterfield, M., Baker, R. E., & Shvartsman, S. Y. (2014). Vertex models of epithelial morphogenesis. Biophys J, 106(11), 2291-2304. doi:10.1016/j.bpj.2013.11.4498
    Galbraith, C. G., Yamada, K. M., & Sheetz, M. P. (2002). The relationship between force and focal complex development. J Cell Biol, 159(4), 695-705. doi:10.1083/jcb.200204153
    Ganz, T. (2002). Epithelia: not just physical barriers. Proc Natl Acad Sci U S A, 99(6), 3357-3358. doi:10.1073/pnas.072073199
    Gardner, J. D., Brown, M. S., & Laster, L. (1970). The columnar epithelial cell of the small intestine: digestion and transport. II. N Engl J Med, 283(23), 1264-1271. doi:10.1056/NEJM197012032832306
    Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol, 10(1), 21-33. doi:10.1038/nrm2593
    Gittes, F., Mickey, B., Nettleton, J., & Howard, J. (1993). Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol, 120(4), 923-934. doi:10.1083/jcb.120.4.923
    Gomez, J. M., Chumakova, L., Bulgakova, N. A., & Brown, N. H. (2016). Microtubule organization is determined by the shape of epithelial cells. Nat Commun, 7, 13172. doi:10.1038/ncomms13172
    Goodwin, K., & Nelson, C. M. (2021). Mechanics of Development. Dev Cell, 56(2), 240-250. doi:10.1016/j.devcel.2020.11.025
    Gudipaty, S. A., Lindblom, J., Loftus, P. D., Redd, M. J., Edes, K., Davey, C. F., . . . Rosenblatt, J. (2017). Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature, 543(7643), 118-121. doi:10.1038/nature21407
    Guillot, C., & Lecuit, T. (2013). Mechanics of epithelial tissue homeostasis and morphogenesis. Science, 340(6137), 1185-1189. doi:10.1126/science.1235249
    Guo, W. H., Frey, M. T., Burnham, N. A., & Wang, Y. L. (2006). Substrate rigidity regulates the formation and maintenance of tissues. Biophys J, 90(6), 2213-2220. doi:10.1529/biophysj.105.070144
    Haas, A. J., Zihni, C., Krug, S. M., Maraspini, R., Otani, T., Furuse, M., . . . Matter, K. (2022). ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions. Cells, 11(23). doi:10.3390/cells11233775
    Hamburger, A. W., & Salmon, S. E. (1977). Primary bioassay of human tumor stem cells. Science, 197(4302), 461-463. doi:10.1126/science.560061
    Hannezo, E., Prost, J., & Joanny, J. F. (2014). Theory of epithelial sheet morphology in three dimensions. Proc Natl Acad Sci U S A, 111(1), 27-32. doi:10.1073/pnas.1312076111
    Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta, 1778(3), 660-669. doi:10.1016/j.bbamem.2007.07.012
    Heuze, M. L., Sankara Narayana, G. H. N., D'Alessandro, J., Cellerin, V., Dang, T., Williams, D. S., . . . Ladoux, B. (2019). Myosin II isoforms play distinct roles in adherens junction biogenesis. Elife, 8. doi:10.7554/eLife.46599
    Ikenouchi, J., Umeda, K., Tsukita, S., Furuse, M., & Tsukita, S. (2007). Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. J Cell Biol, 176(6), 779-786. doi:10.1083/jcb.200612080
    Iskratsch, T., Wolfenson, H., & Sheetz, M. P. (2014). Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol, 15(12), 825-833. doi:10.1038/nrm3903
    Itoh, M., Tsukita, S., Yamazaki, Y., & Sugimoto, H. (2012). Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-myosin II signaling. Proc Natl Acad Sci U S A, 109(25), 9905-9910. doi:10.1073/pnas.1115063109
    Jaalouk, D. E., & Lammerding, J. (2009). Mechanotransduction gone awry. Nat Rev Mol Cell Biol, 10(1), 63-73. doi:10.1038/nrm2597
    Jurado, J., de Navascues, J., & Gorfinkiel, N. (2016). alpha-Catenin stabilises Cadherin-Catenin complexes and modulates actomyosin dynamics to allow pulsatile apical contraction. J Cell Sci, 129(24), 4496-4508. doi:10.1242/jcs.193268
    Kemler, R., Ozawa, M., & Ringwald, M. (1989). Calcium-dependent cell adhesion molecules. Curr Opin Cell Biol, 1(5), 892-897. doi:10.1016/0955-0674(89)90055-0
    Khilan, A. A., Al-Maslamani, N. A., & Horn, H. F. (2021). Cell stretchers and the LINC complex in mechanotransduction. Arch Biochem Biophys, 702, 108829. doi:10.1016/j.abb.2021.108829
    Ko, C. S., Tserunyan, V., & Martin, A. C. (2019). Microtubules promote intercellular contractile force transmission during tissue folding. J Cell Biol, 218(8), 2726-2742. doi:10.1083/jcb.201902011
    Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., & Fuchs, E. (2003). ACF7: an essential integrator of microtubule dynamics. Cell, 115(3), 343-354. doi:10.1016/s0092-8674(03)00813-4
    Kondo, T., & Hayashi, S. (2015). Mechanisms of cell height changes that mediate epithelial invagination. Dev Growth Differ, 57(4), 313-323. doi:10.1111/dgd.12224
    Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., . . . Ma'ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res, 44(W1), W90-97. doi:10.1093/nar/gkw377
    Ladoux, B., Nelson, W. J., Yan, J., & Mege, R. M. (2015). The mechanotransduction machinery at work at adherens junctions. Integr Biol (Camb), 7(10), 1109-1119. doi:10.1039/c5ib00070j
    Lee, H. T., Sharek, L., O'Brien, E. T., Urbina, F. L., Gupton, S. L., Superfine, R., . . . Campbell, S. L. (2019). Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS One, 14(9), e0221962. doi:10.1371/journal.pone.0221962
    Leerberg, J. M., & Yap, A. S. (2013). Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. Protoplasma, 250(4), 817-829. doi:10.1007/s00709-012-0475-6
    Lemke, S. B., & Nelson, C. M. (2021). Dynamic changes in epithelial cell packing during tissue morphogenesis. Curr Biol, 31(18), R1098-R1110. doi:10.1016/j.cub.2021.07.078
    Lien, J. C., & Wang, Y. L. (2021). Cyclic stretching-induced epithelial cell reorientation is driven by microtubule-modulated transverse extension during the relaxation phase. Sci Rep, 11(1), 14803. doi:10.1038/s41598-021-93987-y
    Lin, H. K., Lin, H. H., Chiou, Y. W., Wu, C. L., Chiu, W. T., & Tang, M. J. (2018). Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-Ras(V12) -induced cell transformation. J Cell Mol Med, 22(5), 2631-2643. doi:10.1111/jcmm.13531
    Liu, K. C., & Cheney, R. E. (2012). Myosins in cell junctions. Bioarchitecture, 2(5), 158-170. doi:10.4161/bioa.21791
    Maitre, J. L., Niwayama, R., Turlier, H., Nedelec, F., & Hiiragi, T. (2015). Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol, 17(7), 849-855. doi:10.1038/ncb3185
    Martin, A. C., & Goldstein, B. (2014). Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development, 141(10), 1987-1998. doi:10.1242/dev.102228
    Martin, A. C., Kaschube, M., & Wieschaus, E. F. (2009). Pulsed contractions of an actin-myosin network drive apical constriction. Nature, 457(7228), 495-499. doi:10.1038/nature07522
    Montell, D. J. (2008). Morphogenetic cell movements: diversity from modular mechanical properties. Science, 322(5907), 1502-1505. doi:10.1126/science.1164073
    Morioka, M., Parameswaran, H., Naruse, K., Kondo, M., Sokabe, M., Hasegawa, Y., . . . Ito, S. (2011). Microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle cells. PLoS One, 6(10), e26384. doi:10.1371/journal.pone.0026384
    Nava, M. M., Miroshnikova, Y. A., Biggs, L. C., Whitefield, D. B., Metge, F., Boucas, J., . . . Wickstrom, S. A. (2020). Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell, 181(4), 800-817 e822. doi:10.1016/j.cell.2020.03.052
    Parsons, J. T., Horwitz, A. R., & Schwartz, M. A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol, 11(9), 633-643. doi:10.1038/nrm2957
    Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D., & Waterman, C. M. (2010). Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol, 188(6), 877-890. doi:10.1083/jcb.200906012
    Pavel, M., Renna, M., Park, S. J., Menzies, F. M., Ricketts, T., Fullgrabe, J., . . . Rubinsztein, D. C. (2018). Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun, 9(1), 2961. doi:10.1038/s41467-018-05388-x
    Reichert, M., & Rustgi, A. K. (2011). Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest, 121(12), 4572-4578. doi:10.1172/JCI57131
    Revenu, C., Athman, R., Robine, S., & Louvard, D. (2004). The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol, 5(8), 635-646. doi:10.1038/nrm1437
    Roshanzadeh, A., Nguyen, T. T., Nguyen, K. D., Kim, D. S., Lee, B. K., Lee, D. W., & Kim, E. S. (2020). Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release. Sci Rep, 10(1), 18684. doi:10.1038/s41598-020-75791-2
    Samak, G., Gangwar, R., Crosby, L. M., Desai, L. P., Wilhelm, K., Waters, C. M., & Rao, R. (2014). Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism. Am J Physiol Gastrointest Liver Physiol, 306(11), G947-958. doi:10.1152/ajpgi.00396.2013
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., . . . Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods, 9(7), 676-682. doi:10.1038/nmeth.2019
    Schipper, K., Seinstra, D., Paulien Drenth, A., van der Burg, E., Ramovs, V., Sonnenberg, A., . . . Jonkers, J. (2019). Rebalancing of actomyosin contractility enables mammary tumor formation upon loss of E-cadherin. Nat Commun, 10(1), 3800. doi:10.1038/s41467-019-11716-6
    Schock, F., & Perrimon, N. (2002). Molecular mechanisms of epithelial morphogenesis. Annu Rev Cell Dev Biol, 18, 463-493. doi:10.1146/annurev.cellbio.18.022602.131838
    Shin, J. W., Swift, J., Spinler, K. R., & Discher, D. E. (2011). Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes. Proc Natl Acad Sci U S A, 108(28), 11458-11463. doi:10.1073/pnas.1017474108
    Soleas, J. P., D'Arcangelo, E., Huang, L., Karoubi, G., Nostro, M. C., McGuigan, A. P., & Waddell, T. K. (2020). Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials, 254, 120128. doi:10.1016/j.biomaterials.2020.120128
    Soybel, D. I. (2005). Anatomy and physiology of the stomach. Surg Clin North Am, 85(5), 875-894, v. doi:10.1016/j.suc.2005.05.009
    Spadaro, D., Le, S., Laroche, T., Mean, I., Jond, L., Yan, J., & Citi, S. (2017). Tension-Dependent Stretching Activates ZO-1 to Control the Junctional Localization of Its Interactors. Curr Biol, 27(24), 3783-3795 e3788. doi:10.1016/j.cub.2017.11.014
    Stooke-Vaughan, G. A., & Campas, O. (2018). Physical control of tissue morphogenesis across scales. Curr Opin Genet Dev, 51, 111-119. doi:10.1016/j.gde.2018.09.002
    Straight, A. F., Cheung, A., Limouze, J., Chen, I., Westwood, N. J., Sellers, J. R., & Mitchison, T. J. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science, 299(5613), 1743-1747. doi:10.1126/science.1081412
    Strauss, R. E., & Gourdie, R. G. (2020). Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules, 10(12). doi:10.3390/biom10121656
    Tabata, T., & Takei, Y. (2004). Morphogens, their identification and regulation. Development, 131(4), 703-712. doi:10.1242/dev.01043
    Tan, I., & Leung, T. (2009). Myosin light chain kinases: division of work in cell migration. Cell Adh Migr, 3(3), 256-258. doi:10.4161/cam.3.3.8212
    Tan, J. L., Ravid, S., & Spudich, J. A. (1992). Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem, 61, 721-759. doi:10.1146/annurev.bi.61.070192.003445
    Tokuda, S., Higashi, T., & Furuse, M. (2014). ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS One, 9(8), e104994. doi:10.1371/journal.pone.0104994
    Tsuda, Y., Yasutake, H., Ishijima, A., & Yanagida, T. (1996). Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci U S A, 93(23), 12937-12942. doi:10.1073/pnas.93.23.12937
    Uroz, M., Wistorf, S., Serra-Picamal, X., Conte, V., Sales-Pardo, M., Roca-Cusachs, P., . . . Trepat, X. (2018). Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat Cell Biol, 20(6), 646-654. doi:10.1038/s41556-018-0107-2
    Vasileva, E., & Citi, S. (2018). The role of microtubules in the regulation of epithelial junctions. Tissue Barriers, 6(3), 1539596. doi:10.1080/21688370.2018.1539596
    Vicente-Manzanares, M., Ma, X., Adelstein, R. S., & Horwitz, A. R. (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 10(11), 778-790. doi:10.1038/nrm2786
    Wang, J., Wang, C. D., Zhang, N., Tong, W. X., Zhang, Y. F., Shan, S. Z., . . . Li, Q. F. (2016). Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis, 7(5), e2221. doi:10.1038/cddis.2016.112
    Wang, J. G., Miyazu, M., Xiang, P., Li, S. N., Sokabe, M., & Naruse, K. (2005). Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci, 76(24), 2817-2825. doi:10.1016/j.lfs.2004.10.050
    Wang, Y., Minshall, R. D., Schwartz, D. E., & Hu, G. (2011). Cyclic stretch induces alveolar epithelial barrier dysfunction via calpain-mediated degradation of p120-catenin. Am J Physiol Lung Cell Mol Physiol, 301(2), L197-206. doi:10.1152/ajplung.00048.2011
    Wang, Y., Shi, J., & Tong, X. (2021). Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci, 22(16). doi:10.3390/ijms22168782
    Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., . . . Takeichi, M. (1998). alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol, 142(3), 847-857. doi:10.1083/jcb.142.3.847
    Wells, R. G. (2008). The role of matrix stiffness in regulating cell behavior. Hepatology, 47(4), 1394-1400. doi:10.1002/hep.22193
    Wen, F. L., Kwan, C. W., Wang, Y. C., & Shibata, T. (2021). Autonomous epithelial folding induced by an intracellular mechano-polarity feedback loop. PLoS Comput Biol, 17(12), e1009614. doi:10.1371/journal.pcbi.1009614
    Wirtz, D., Konstantopoulos, K., & Searson, P. C. (2011). The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer, 11(7), 512-522. doi:10.1038/nrc3080
    Wozniak, M. A., Modzelewska, K., Kwong, L., & Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochim Biophys Acta, 1692(2-3), 103-119. doi:10.1016/j.bbamcr.2004.04.007
    Wyatt, T., Baum, B., & Charras, G. (2016). A question of time: tissue adaptation to mechanical forces. Curr Opin Cell Biol, 38, 68-73. doi:10.1016/j.ceb.2016.02.012
    Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., . . . Ma'ayan, A. (2021). Gene Set Knowledge Discovery with Enrichr. Curr Protoc, 1(3), e90. doi:10.1002/cpz1.90
    Xu, S., Xue, X., You, K., & Fu, J. (2016). Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res, 17(1), 50. doi:10.1186/s12931-016-0364-1
    Yan, J., Wang, W. B., Fan, Y. J., Bao, H., Li, N., Yao, Q. P., . . . Han, Y. (2020). Cyclic Stretch Induces Vascular Smooth Muscle Cells to Secrete Connective Tissue Growth Factor and Promote Endothelial Progenitor Cell Differentiation and Angiogenesis. Front Cell Dev Biol, 8, 606989. doi:10.3389/fcell.2020.606989
    Yang, B., Wolfenson, H., Chung, V. Y., Nakazawa, N., Liu, S., Hu, J., . . . Sheetz, M. P. (2020). Stopping transformed cancer cell growth by rigidity sensing. Nat Mater, 19(2), 239-250. doi:10.1038/s41563-019-0507-0
    Yano, T., Kanoh, H., Tamura, A., & Tsukita, S. (2017). Apical cytoskeletons and junctional complexes as a combined system in epithelial cell sheets. Ann N Y Acad Sci, 1405(1), 32-43. doi:10.1111/nyas.13432
    Yao, M., Qiu, W., Liu, R., Efremov, A. K., Cong, P., Seddiki, R., . . . Yan, J. (2014). Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun, 5, 4525. doi:10.1038/ncomms5525
    Yap, A. S., Duszyc, K., & Viasnoff, V. (2018). Mechanosensing and Mechanotransduction at Cell-Cell Junctions. Cold Spring Harb Perspect Biol, 10(8). doi:10.1101/cshperspect.a028761
    Yeh, Y. C., Ling, J. Y., Chen, W. C., Lin, H. H., & Tang, M. J. (2017). Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin. Sci Rep, 7(1), 15008. doi:10.1038/s41598-017-14932-6
    Zemljic-Harpf, A. E., Godoy, J. C., Platoshyn, O., Asfaw, E. K., Busija, A. R., Domenighetti, A. A., & Ross, R. S. (2014). Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci, 127(Pt 5), 1104-1116. doi:10.1242/jcs.143743
    Zhang, D., Zhang, R., Song, X., Yan, K. C., & Liang, H. (2021). Uniaxial Cyclic Stretching Promotes Chromatin Accessibility of Gene Loci Associated With Mesenchymal Stem Cells Morphogenesis and Osteogenesis. Front Cell Dev Biol, 9, 664545. doi:10.3389/fcell.2021.664545
    Zhao, Y. H., Lv, X., Liu, Y. L., Zhao, Y., Li, Q., Chen, Y. J., & Zhang, M. (2015). Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1. Stem Cell Res, 14(3), 283-296. doi:10.1016/j.scr.2015.02.006
    Zihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol, 17(9), 564-580. doi:10.1038/nrm.2016.80

    無法下載圖示 校內:2027-08-09公開
    校外:2027-08-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE