| 研究生: |
施卜誠 Shih, Pu-Cheng |
|---|---|
| 論文名稱: |
溫熱環境變化對建材表面吸附甲醛性能之研究 A Study on the Effects of Thermal Environmental Factors to the Formaldehyde Sorptive Properties of Building Material Surface |
| 指導教授: |
江哲銘
Chiang, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 溫熱環境 、吸附性能 、吸附建材 、甲醛 、塗料 |
| 外文關鍵詞: | Thermal environment, Adsorption properties, Adsorptive building material, HCHO, Paint |
| 相關次數: | 點閱:161 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討溫熱環境因子下,對建材表面吸附揮發性有機物之影響。藉由相關文獻調查分析,了解台灣地區室內熱溼環境氣候特性,以小型環控箱改變溫度、溼度環境變因設定,供應標的污染物(甲醛)至環控箱中,進行乾、濕式建材之吸附、脫附試驗。透過實驗過程中甲醛濃度採樣分析,探討溫、濕度與建材吸附之相互影響程度。
本研究主要可歸納以下結論 :
(一)溫溼度變因下建材表面對甲醛吸附之影響
透過實驗分析,乳膠漆對甲醛之吸附隨環境溫度升高吸附率呈現下降趨勢,溫度越高吸附率降低程度越明顯; 環境相對濕度增加,乳膠漆吸附程度亦有下降趨勢。
(二)乾濕式建材對甲醛吸附之變化
於乳膠漆(濕式建材)吸附實驗結果顯示,乳膠漆隨吸附時間增長,吸附量呈現一較為穩定之下降趨勢。在竹碳板(乾式建材)吸附實驗結果顯示,竹碳板初期吸附量呈現上升趨勢,至吸附中期吸附量明顯下降,而後再趨於穩定狀態。由本研究實驗可知,本試驗所使用之兩種建材吸附行為並非呈單一吸附模式,建材吸附歷程吸附量隨建材組成、種類等而有不同吸附型態。
(三)建材對甲醛吸附及再脫附模式
乳膠漆吸附試驗環境溫度為25℃、28℃之實驗模組,於吸附試驗階段後進行升溫至35℃再脫附試驗,環控箱經採樣分析結果發現濃度有明顯上升情形,濃度上升顯示當溫度上升幅度大時建材表面吸附之甲醛受溫度激發而產生大量脫附現象。於環境溫度31℃之實驗模組,由於升溫至35℃之間的升溫幅度不大,受激發釋出甲醛的情形並不顯著。
(四)建材吸附行為對改善室內空氣品質可行性
透過溫度、濕度環境變異因子設定所進行之各組實驗,經由採樣分析後,藉由計算吸附通量則能看出每小時每單位面積下所能吸附之量,乳膠漆在溫度25℃、28℃下各組試驗吸附通量皆能達到85µg/(m²*h)以上。以25℃-50%RH表現最好吸附通量可達124.94 µg/(m²*h),於每小時每單位面積下,乳膠漆可吸附124.94微克之甲醛物質。
This study investigated the impacts of thermal environmental factors on VOCs adsorption for the surface of building materials. According to literature reviews, a small scale chamber with fixed pollutant (HCHO) was set up to simulate the indoor environment for the testing of HCHO adsorption and desorption from dry and wet building materials. Through experiments and analysis, this study aimed to probe the effects of temperature and humidity on the adsorption of HCHO for building materials.
The following are the conclusions of this research:
(1)Effects of temperature and humidity on the adsorption of HCHO for the surface of building materials
The experimental results show that the adsorption rate of HCHO for latex paint decrease by the rise of temperature. The higher the temperature, the less the adsorption rate of HCHO. Furthermore, the adsorption rate of HCHO for latex paint also decrease by the rise of relative humidity.
(2)Changes of the adsorption of HCHO for dry and wet building materials
The results show that the adsorption quantities of latex paint (wet building material) decrease at a stable rate when the adsorptive time is increased. Moreover, the adsorption quantities of bamboo carbon plate (wet building material) increase in the beginning and then decayed steadily during a later stage. As a result, we find out that the adsorption behaviors of HCHO for the two building materials are not just present a single state. The adsorption quantities might have different adsorption states depending on compositions, types, and other factors of building materials.
(3)Models from HCHO adsorption to HCHO desorption for building materials
In the experiments of latex paint adsorption, the temperatures are set as 25 and 28℃. After the experiments of adsorption, both of the temperatures are changed to 35℃ to conduct the experiments of desorption. The results show that the HCHO concentrations of the small scale chamber increase obviously and then desorb greatly when the temperature is increased at a wide range, whereas the HCHO desorption varied indistinctively when the temperature is changed from 31 to 35℃.
(4)Proposed the adsorption behaviors of building materials to improve indoor air exchange rate
According to the adsorption quantities of building materials in the adsorption experiment, we calculate the sorption flux. The 4 cases(the temperatures are set as 25 and 28℃) of latex paint experiments of the sorption flux are higher than 85μg/ (m²*h) level. In parts of latex paint (25℃, RH=50%), the average rate of the sorption flux is 124.94μg/ (m²*h). It means that the latex paint(25℃, RH=50%) can adsorb HCHO 124.94μg per hour per square meter.
1.江哲銘、李俊璋,綠建材對甲醛及TVOC吸附性能之測試方法驗證計畫,內政部建研所,2010。
2.劉琴琴、揚旭東,建材VOC吸附特性的研究進展,暖通空調期刊,2009。
3.蕭在富,台中市大慶國宅室內溫熱環境之調查研究,逢甲大學建築碩士論文2008。
4.邱春惠,邱瑞宇,市售活性碳、木炭和孟宗竹炭對甲苯之吸脫附探討,屏東科技大學環境工程與科學研究所 ,2008。
5.許菁珊,沸石對於光電產業揮發性有機化合物之吸/脫附研究,國立中山大學環境工程研究所碩士論文,2007。
6.胡宏志,鈷在活性碳纖維中的吸附與鑑定,國立成功大學化學研究所碩士論文,2002。
7.盧昆宗,維護室內健康安全的圖裝設計與施工要點,塗料與塗裝技術Vol75,2002。
8.李芝珊,居家環境和辦公大樓室內空氣品質調查評估,環保署,1998。
9.陳東榮、江哲銘,住宅室內空氣品質現場測定與評估探討,國立成功大學建築研究所碩士論文,1993。
10.彭定吉,集合住宅室內空氣環境( CO2、CO、粉塵)現場量測方法之探討,國立成功大學建築研究所碩士論文,1992。
11.中央氣象局全球資訊網,http://www.cwb.gov.tw/
12.行政院環境保護署,http://www.epa.gov.tw/
二、 日文部份
1.BCJ-CS-5 室内空気中の揮発性有機化合物汚染低減建材認定基準,2003。
2.JSTM H 5001小形チャンバー法による室内空気汚染濃度低減建材の低減性能試験方法,2005。
3.JIS A 1905-1 小形チャンバー法による室内空気汚染濃度低減材の低減性能試験法―第1部:一定ホルムアルデヒド濃度供給法による吸着速度測定,2007。
4.JIS A 1905-2小形チャンバー法による室内空気汚染濃度低減材の低減性能試験法―第2部:ホルムアルデヒド放散建材を用いた吸着速度測定 ,2007。
5.徐 長厚,室内空気汚染濃度低減材のVOCs 濃度低減性能試験に関する研究(その1)-小形Test Chamber 法における活性炭・吸着建材のToluene 濃度低減性能試験,2005。
6.徐 長厚,各種吸着建材を用いた室内VOCs 濃度低減性能試験及び吸着持続性能の検討,2008。
7.徐 長厚,吸着材及び吸着建材を用いた室内VOCs 濃度低減性能試験に関する研究-トルエン濃度低減効果に影響を及ぼす因子の検討,2008。
8.藤田 聡 ,空気中ホルムアルデヒド濃度低減材料の性能評価法に関する研究,2006。
9.石川祐子,小形チャンバー法による 室内空気汚染濃度低減建材の低減性能試験,2006。
10.安宅勇二,化学反応型パッシブ吸着建材の濃度低減効果に関する研究濃度低減効果測定法の開発と検証,2004。
11.小幡 透,木質建材の化学物質吸着・脱着特性の解明,2004。
三、 英文部分
1.ASTM D5116-06. Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions form Indoor Materials/ Products, 2006.
2.ASTM D5116-06Standerd Guild for Small-Scale Environmental Chamber Determination for Organic Emission from indoor materials/products. American Testing and Materials, West Conshohocken ,PA,USA,2006.
3.Berglund Birgitta,Ingegerd Johanssan and Thomas Lindvall, Volatile Organic Compounds from Used Buildiing Materials in a Simulated Chamber Study, Environmental International,1989(15): 383-397.
4.Brooks, B.O., G.M. Utter, J.A. Debory and R.D. Schimke, 1991, “Indoor air pollution:an edifice complex”,Clinical Toxicology.
5.Carlson N.W., Dranoff J.S.Ind.Eng.Chem.Process.Des.Dev.,24,1300,1985.
6.Chiang P.C., Jeng,F.T. and You,J.H. The Utilization if the Reclaimed Adsorbent for Removal of Organic Vapor,Proc.7th.World Clean Air Congress & Exhibition,Sydeny,Australia,1,338,1986.
7.Chiang P.C.,Lee D.M.and Lin T.F., Comparsion of Effect of Mositure Content and Binary Mixtures on Adsorption Capacity of Activated Carbon and Activated Coal Fiber, Presented at the 1990 Annual AICH National Meeting,Nov,1990,11,Chiago,Illinois,U.S.A.
8.Huey-Jen Su, Pei-Chih Wu, Exposure Assessment of Indoor Allergens, Endotoxin, and Airborne Fungi for Homes in Southern Taiwan,Environment Research Section A85,pp.135-144, 2001.
9.IARC.Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man.Geneva: World Health Organization, International Agency for Research on Cancer, 1972-PRESENT. (Multivolume work).1982;29,361
10.ISO 16000-23 Indoor air -- Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive building materials , 2009.
11.ISO 16000-24 Indoor air -- Part 24: Performance test for evaluating the reduction of VOC concentrations by sorptive building materials , 2009.
12.ISO 16000-3 Indoor air -- Part 3: Determination of formaldehyde and other carbonyl compounds-Active sampling method, 2001.
13.John, L.A., Sansone E.B. and Farris T.S. The Effect of Moisture on the Adsorption of Chloroform by Activated Carbon.Am.Ind.Hyg.Assoc.,46,20, 1985.
14.Jones A.P.,1999, ”Indoor Air Quality and Health,”Atmospheric Environment,33,4535-4564.
15.Kinoshita K., Carbon: Electrochemical and Physico-chemical Properties, John Wiely & Sons,1988.
16.Kun-Chih Huang, Che-Ming Chiang, Ching-Chang Lee, Fang-Ming Lin, Wen-Cheng Shao, Validation and Performance test of The Reduction Formaldehyde Concentrations For Indoor Environment By Sorptive Building Materials In Taiwan, Indoor air , Austin Texas, U.S.A., 2011.
17.Maroni, M., Seifert, B., Lindvall, T.( Eds.) Indoor Air Quality- a Comprehensive Reference Book. Elsevier, Amsterdam., 1995.
18.Ministry of Environment.(1987).The National Building Code of Finland. Indoor Climate and Ventilation in Buildings.
19.Molhave L.,1982, “Indoor Air Pollution Due To Organic Gases and Vapors of Solvents in Building Materials”,Environment International, Vol.8,p.117-127.
20.Ruthven, D.M. Principles of Adsorption and Adsorption Process, 1984.
21.Seifert, B. “Organic Indoor Pollutant:: Sourse, Species and Concentrations”,Chemical and Environment Science Volume4: Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality- State of the Art in SBS, Ed. Knoppel H. and Wolkoff, p.25-36.
22.Sterling,E.M. et. al., ASHRAE Transition V91 Pt13 611-622.
23.Tate N,”The sick building syndrome”,New Horizon Press, U.S.A.,1994,pp:77-92,.
24.You J.H., Chiang H.L., Chiang P.C. Comparsing of Adsorption Characteristics for VOCs on Activated Carbon and Oxidized Activated Carbon. Environmental Progress 13,31,1994.