簡易檢索 / 詳目顯示

研究生: 陳信光
Chen, Shinn-Guang
論文名稱: 克雷白氏肺炎桿菌致病因子之研究
Study on the virulence factors of Klebsiella pneumoniae
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 100
中文關鍵詞: 克雷白氏肺炎桿菌
外文關鍵詞: Klebsiella pneumoniae
相關次數: 點閱:34下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 克雷白氏肺炎桿菌是株伺機性感染菌株。它是常見的醫院感染病源,會造成病人尿道感染、肺炎及下腹部感染。在臺灣,克雷白氏肺炎桿菌的感染常造成肝膿瘍,而在西方國家,肝膿瘍卻是由多種微生物所造成,包括大腸桿菌、鍵球菌及一些兼性好氧菌。在臺灣,克雷白氏肺炎桿菌感染所造成肝膿瘍的病患,本身沒有肝病病史,但大部份都有糖尿病病史。在過去的二十年,克雷白氏肺炎桿菌造成的肝膿瘍已成為臺灣特有的疾病。
    在過去的研究中,我們選殖到一個克雷白氏肺炎桿菌基因omp2,其基因產物的胺基酸序列與Coxiella burnetii的外膜蛋白質COM1有很高的相似性. 而Coxiella burnetii 的這個外膜蛋白被認為是一個很重要的免疫系統辨識因子, 並且已發展為疫苗來保護牛隻免於受到Coxiella burnetii的感染。研究Omp2是否會在克雷白氏肺炎桿菌感染過程中,引發免疫反應,我們將Omp2當成疫苗來用,在動物實驗中,測試Omp2能否產生保護小鼠免於受到克雷白氏肺炎桿菌的感染。但結果卻未如我們所預期的有任何保護的效果。
    然而在胺基酸的序列比對上,我們發現Omp2上帶有一個區域與DsbA的活化中心相似。在大腸桿菌中,DsbA在膜間隙是主要的氧化催化劑,它影響著雙硫鍵的形成。而dsbA 的突變會造成菌外表型上,很多的改變,這些外表型包括鹼性磷酸酵素及脂酵素的活性下降,會對還原劑DTT敏感,我們猜想是否將omp2突變之後也會有跟dsbA突變之後有同樣的改變,所以我們將omp2利用基因插入的方式,使omp2突變,克雷白氏肺炎桿菌omp2突變株對還原劑DTT也一樣敏感,且鹼性磷酸酵素與脂酵素活性都明顯下降,並且突變株無法正常的生活在含有三梨醇微量培養基上。這些外表型的變化和dsbA突變很像,暗示著omp2可能和dsbA在生理上有同樣的功能。

    Klebsiella pneumoniae is an opportunistic bacterium. It is a common hospital-acquired pathogen, causing urinary tract infections, nosocomial pneumonia, and intraabdominal infections. In Taiwan, K. pneumoniae is a significant cause of hepatic abscess. However, in western countries, liver abscess is usually a polymicrobial infection and agents of liver abscess are Escherichia coli, streptococci, and anaerobic bacteria. Most of the patients with K. pneumoniae liver abscess are diabetic and without biliary tract disease, in Taiwan. K. pneumoniae liver abscess has become an endemic disease in Taiwan in the past 2 decades.
    In previous study, we have cloned a K. pneumoniae gene, omp2, whose product shows at amino acid sequence homology to the outer membrane protein, COM1, of Coxiella burnetii. The COM1 of Coxiella burnetii is thought an important factor for recognition of immune system and it has been developed as a vaccine for preventing cow from C. burnetii infection. To investigate whether the Omp2 is involved in immune response during K. p infection, Omp2 was used as a vaccine and the animal experiments of protective effect for preventing mice from K. p infection were performed. The result showed that Omp2 has no effect for protecting mice from K. p infection.
    However, Omp2 has a motif that is homologous to active site of DsbA. In E. coli DsbA protein is the major oxidative catalyst in the periplasm and it affects disulfide bond formation of secretory and preplasmic proteins. dsbA mutants exhibit pleiotropic phenotypes. These phenotypes include reduction in levels of activity of the periplasmic enzyme alkaline phosphatase and lipase, and sensitivity to the reducing agent dithiothreitol (DTT). To invesigate whether omp2 mutant of K. p exhibit the same phenotypes to dsbA mutant of E. coli. omp2-defective was constructed by homologous recombisntion in this study and the phenotypes of omp2-mutant were determented. omp2 mutant is highly sensitive to DTT, shows reducing expression of alkaline phosphatase and lipase activity, and cannot grow well o sorbitol minimal plate. Theses phenotypes are very similar to those of dsbA mutant strains in other bacteria. The gene, omp2, may have the same physiological function of dsbA.

    授權書 II 考試合格證明 III 中文摘要 IV 英文摘要 V 誌謝 VII 目錄 VIII 圖目錄 X 表目錄 XII 縮寫檢索表 XIII 緒論 1 一、 克雷白氏肺炎桿菌之基本介紹 1 二、 研究動機 2 三、 雙硫鍵的重要性 2 四、 dsbA的生理功能與雙硫鍵形成催化路徑 3 材料與方法 7 一、 使用的菌株、載體與培養基 7 二、 抽取少量質體 9 三、 大腸桿菌之形質轉換(transform) 10 四、 染色體DNA之抽取 11 五、 DNA之濃度測定 12 六、 PCR (polymerase chain reaction) 12 七、 限制酵素切割 13 八、 接合反應(ligation) 14 九、 Omp2蛋白質表現 14 十、 蛋白質電泳分析(SDS-PAGE) 15 十一、 融合蛋白之純化 17 十二、 蛋白質濃度定量 18 十三、 多株抗體之製備 19 十四、 西方墨點法 19 十五、 動物實驗之主、被動免疫 21 十六、 酵素免疫反應 22 十七、 基因突變株之構築與篩選 23 十八、 細胞區分法 24 十九、 菌株生長曲線測定於不同的pH值下 25 二十、 DTT測試 26 二十一、 Alkaline phosphatase 測試 27 二十二、 Lipase 測試 28 二十三、 菌株碳源需求分析 29 二十四、 生物膜形成分析 29 二十五、 Mobility assay 30 二十六、 穿透式電子顯微鏡觀察 31 二十七、 細胞附著分析 31 結果與討論 33 總結 46 參考文獻 49 附錄 54 自述 100

    1. Akiyama, Y. and Ito, K. (1993) Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. J Biol Chem, 268, 8146-8150.
    2. Anderl, J.N., Zahller, J., Roe, F. and Stewart, P.S. (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother, 47, 1251-1256.
    3. Andersen, C.L., Matthey-Dupraz, A., Missiakas, D. and Raina, S. (1997) A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol Microbiol, 26, 121-132.
    4. Bader, M., Muse, W., Ballou, D.P., Gassner, C. and Bardwell, J.C. (1999) Oxidative protein folding is driven by the electron transport system. Cell, 98, 217-227.
    5. Bader, M.W., Hiniker, A., Regeimbal, J., Goldstone, D., Haebel, P.W., Riemer, J., Metcalf, P. and Bardwell, J.C. (2001) Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. Embo J, 20, 1555-1562.
    6. Bader, M.W., Xie, T., Yu, C.A. and Bardwell, J.C. (2000) Disulfide bonds are generated by quinone reduction. J Biol Chem, 275, 26082-26088.
    7. Bardwell, J.C., Lee, J.O., Jander, G., Martin, N., Belin, D. and Beckwith, J. (1993) A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A, 90, 1038-1042.
    8. Bardwell, J.C., McGovern, K. and Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell, 67, 581-589.
    9. Bessette, P.H., Cotto, J.J., Gilbert, H.F. and Georgiou, G. (1999) In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem, 274, 7784-7792.
    10. Bouwman, C.W., Kohli, M., Killoran, A., Touchie, G.A., Kadner, R.J. and Martin, N.L. (2003) Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J Bacteriol, 185, 991-1000.
    11. Brickman, E. and Beckwith, J. (1975) Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol, 96, 307-316.
    12. Charbonnier, J.B., Belin, P., Moutiez, M., Stura, E.A. and Quemeneur, E. (1999) On the role of the cis-proline residue in the active site of DsbA. Protein Sci, 8, 96-105.
    13. Chen, J., Song, J.L., Zhang, S., Wang, Y., Cui, D.F. and Wang, C.C. (1999) Chaperone activity of DsbC. J Biol Chem, 274, 19601-19605.
    14. Dailey, F.E. and Berg, H.C. (1993) Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A, 90, 1043-1047.
    15. Darby, N.J., Raina, S. and Creighton, T.E. (1998) Contributions of substrate binding to the catalytic activity of DsbC. Biochemistry, 37, 783-791.
    16. Derman, A.I. and Beckwith, J. (1991) Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol, 173, 7719-7722.
    17. Fung, C.P., Chang, F.Y., Lee, S.C., Hu, B.S., Kuo, B.I., Liu, C.Y., Ho, M. and Siu, L.K. (2002) A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 50, 420-424.
    18. Fung, C.P., Hu, B.S., Chang, F.Y., Lee, S.C., Kuo, B.I., Ho, M., Siu, L.K. and Liu, C.Y. (2000) A 5-year study of the seroepidemiology of Klebsiella pneumoniae: high prevalence of capsular serotype K1 in Taiwan and implication for vaccine efficacy. J Infect Dis, 181, 2075-2079.
    19. Genevaux, P., Muller, S. and Bauda, P. (1996) A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett, 142, 27-30.
    20. Guddat, L.W., Bardwell, J.C., Zander, T. and Martin, J.L. (1997) The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci, 6, 1148-1156.
    21. Ha, U.H., Wang, Y. and Jin, S. (2003) DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect Immun, 71, 1590-1595.
    22. Inaba, K. and Ito, K. (2002) Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. Embo J, 21, 2646-2654.
    23. Izquierdo, L., Merino, S., Regue, M., Rodriguez, F. and Tomas, J.M. (2003) Synthesis of a Klebsiella pneumoniae O-antigen heteropolysaccharide (O12) requires an ABC 2 transporter. J Bacteriol, 185, 1634-1641.
    24. Jackson, M.W. and Plano, G.V. (1999) DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J Bacteriol, 181, 5126-5130.
    25. Kadokura, H., Katzen, F. and Beckwith, J. (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem, 72, 111-135.
    26. Kadokura, H., Tian, H., Zander, T., Bardwell, J.C. and Beckwith, J. (2004) Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science, 303, 534-537.
    27. Ko, W.C., Paterson, D.L., Sagnimeni, A.J., Hansen, D.S., Von Gottberg, A., Mohapatra, S., Casellas, J.M., Goossens, H., Mulazimoglu, L., Trenholme, G., Klugman, K.P., McCormack, J.G. and Yu, V.L. (2002) Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis, 8, 160-166.
    28. Kouker, G. and Jaeger, K.E. (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol, 53, 211-213.
    29. Lee, T.Y., Makino, K., Shinagawa, H., Amemura, M. and Nakata, A. (1989) Phosphate regulon in members of the family Enterobacteriaceae: comparison of the phoB-phoR operons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae. J Bacteriol, 171, 6593-6599.
    30. Liu, X. and Wang, C.C. (2001) Disulfide-dependent folding and export of Escherichia coli DsbC. J Biol Chem, 276, 1146-1151.
    31. Missiakas, D., Georgopoulos, C. and Raina, S. (1993) Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci U S A, 90, 7084-7088.
    32. Missiakas, D., Schwager, F. and Raina, S. (1995) Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. Embo J, 14, 3415-3424.
    33. Nakata, A., Amemura, M. and Shinagawa, H. (1984) Regulation of the phosphate regulon in Escherichia coli K-12: regulation of the negative regulatory gene phoU and identification of the gene product. J Bacteriol, 159, 979-985.
    34. Ng, T.C., Kwik, J.F. and Maier, R.J. (1997) Cloning and expression of the gene for a protein disulfide oxidoreductase from Azotobacter vinelandii: complementation of an Escherichia coli dsbA mutant strain. Gene, 188, 109-113.
    35. Peek, J.A. and Taylor, R.K. (1992) Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A, 89, 6210-6214.
    36. Postma, P.W., Lengeler, J.W. and Jacobson, G.R. (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev, 57, 543-594.
    37. Rietsch, A., Belin, D., Martin, N. and Beckwith, J. (1996) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci U S A, 93, 13048-13053.
    38. Rietsch, A., Bessette, P., Georgiou, G. and Beckwith, J. (1997) Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol, 179, 6602-6608.
    39. Robillard, G.T. and Lolkema, J.S. (1988) Enzymes II of the phosphoenolpyruvate-dependent sugar transport systems: a review of their structure and mechanism of sugar transport. Biochim Biophys Acta, 947, 493-519.
    40. Sardesai, A.A., Genevaux, P., Schwager, F., Ang, D. and Georgopoulos, C. (2003) The OmpL porin does not modulate redox potential in the periplasmic space of Escherichia coli. Embo J, 22, 1461-1466.
    41. Seok, Y.J., Koo, B.M., Sondej, M. and Peterkofsky, A. (2001) Regulation of E. coli glycogen phosphorylase activity by HPr. J Mol Microbiol Biotechnol, 3, 385-393.
    42. Shevchik, V.E., Bortoli-German, I., Robert-Baudouy, J., Robinet, S., Barras, F. and Condemine, G. (1995) Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi. Mol Microbiol, 16, 745-753.
    43. Shevchik, V.E., Condemine, G. and Robert-Baudouy, J. (1994) Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. Embo J, 13, 2007-2012.
    44. Siebold, C., Flukiger, K., Beutler, R. and Erni, B. (2001) Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett, 504, 104-111.
    45. Stancik, L.M., Stancik, D.M., Schmidt, B., Barnhart, D.M., Yoncheva, Y.N. and Slonczewski, J.L. (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol, 184, 4246-4258.
    46. Stenson, T.H. and Weiss, A.A. (2002) DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect Immun, 70, 2297-2303.
    47. Tomb, J.F. (1992) A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci U S A, 89, 10252-10256.
    48. Torriani, A. (1990) From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. Bioessays, 12, 371-376.
    49. Urban, A., Leipelt, M., Eggert, T. and Jaeger, K.E. (2001) DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J Bacteriol, 183, 587-596.
    50. Watarai, M., Tobe, T., Yoshikawa, M. and Sasakawa, C. (1995) Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc Natl Acad Sci U S A, 92, 4927-4931.
    51. Wehmeier, U.F. and Lengeler, J.W. (1994) Sequence of the sor-operon for L-sorbose utilization from Klebsiella pneumoniae KAY2026. Biochim Biophys Acta, 1208, 348-351.
    52. Weigel, N., Kukuruzinska, M.A., Nakazawa, A., Waygood, E.B. and Roseman, S. (1982) Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. J Biol Chem, 257, 14477-14491.
    53. Whitfield, C. and Roberts, I.S. (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol, 31, 1307-1319.
    54. Winter, J., Neubauer, P., Glockshuber, R. and Rudolph, R. (2001) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol, 84, 175-185.
    55. Yamanaka, H., Kameyama, M., Baba, T., Fujii, Y. and Okamoto, K. (1994) Maturation pathway of Escherichia coli heat-stable enterotoxin I: requirement of DsbA for disulfide bond formation. J Bacteriol, 176, 2906-2913.
    56. Yu, J., Webb, H. and Hirst, T.R. (1992) A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol, 6, 1949-1958.
    57. Zapun, A., Missiakas, D., Raina, S. and Creighton, T.E. (1995) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry, 34, 5075-5089.

    下載圖示 校內:2014-02-12公開
    校外:2014-02-12公開
    QR CODE