| 研究生: |
劉柏佑 Liu, Bo-You |
|---|---|
| 論文名稱: |
金屬-氧化物-半導體二極體式氣體感測器之研製 Fabrication of Metal-Oxide-Semiconductor (MOS) Diode-Type Gas Sensors |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 共同指導教授: |
林坤瑋
Lin, Kun-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 奈米粒子 、鈀 、鉑 、過氧化氫 、表面處理 、氫氣感測器 、氨氣感測器 、蕭特基二極體 、二氧化矽奈米球 、粗糙度 、活化能 、射頻濺射 、五氧化二鉭 、氧化鎵 、無電鍍 |
| 外文關鍵詞: | nanoparticles, palladium, platinum, hydrogen peroxide, surface treatment, hydrogen gas sensors, ammonia gas sensors, Schottky diodes, SiO2 nanospheres, roughness, activation energy, radio frequency sputter, tantalum pentoxide, gallium oxide, electroless plating |
| 相關次數: | 點閱:179 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中,主要研究以氮化鎵/氮化鋁鎵/氮化鎵結構研製蕭特基式氣體感測器,與其他材料(例如砷化鎵、矽)相比,氮化鎵的寬能隙能帶、高電子飽和速度、高載子濃度和高崩潰電壓,用來製作元件有高速、低雜訊且可在高溫下操作的特性,而與氮化鋁鎵接面處所存在的高密度二維電子氣(2-DEG)能使氮化鎵/氮化鋁鎵/氮化鎵基底的感測器展現良好的感測能力。以過氧化氫表面氧化處理和射頻濺鍍的方式在蕭特基感測區分別生成高質量的氧化層(GaOx、Ta2O5和Ga2O3),這些氧化層有寬能隙能帶和高介電係數的特性,能夠大幅降低元件表面的漏電流,因而提升感測特性。
利用快速對流沉積法(RCD)在原有的催化金屬鉑上塗上單層二氧化矽奈米球,於此之上再蒸鍍上一層鉑薄膜,運用兩層修飾的方式大幅度增加表面粗糙度和體表面積比,增加元件的吸附能力。另外,而在催化金屬上方利用快速蒸鍍法製造奈米粒子能增加表面積及增強溢出效應的功能。最後章節運用無電鍍的方式取代傳統熱蒸鍍在蕭特基區域形成感測層,相比於熱蒸鍍,無電鍍的製程過程有著簡易操作、低溫、低耗能且製程時間短的優點,不僅能避免熱損壞,較粗糙的表面也能使元件提升吸附能力。高質量氧化層、無電鍍、奈米粒子跟二氧化矽奈米球等修飾方法使表面漏電流降低、吸附能力增加、粗糙度提升皆有利於元件的感測倍率、速度等效果。
In this thesis, the main research is to develop Schottky type gas sensors with GaN/AlGaN/GaN-based structure. Compared with other materials (such as GaAs and Si), GaN material has the characteristics of wide energy bandgap, high electron saturation speed, high carrier concentration, and high breakdown voltage, which can be employed in high-speed and low-noise devices and operate at high temperature. In addition, the presence of the heterojunction between GaN and AlGaN, the high-density two-dimension electron gas (2-DEG), can results in GaN/AlGaN/GaN-based sensors exhibit good sensing performances. High-quality oxide layers (GaOx, Ta2O5, and Ga2O3) were formed on the Schottky sensing area by hydrogen peroxide treatment and radio frequency sputtering, respectively. These oxide layers have the characteristics of wide energy bandgap and high dielectric coefficient, which can significantly reduce the surface leakage current and improve sensing performance.
By using rapid convection deposition (RCD) method, a uniform SiO2 nanospheres (NS) monolayer was coated on the catalytic platinum metal, and then a platinum film was deposited on it by vacuum thermal evaporation (VTE). This two-layer modification method greatly increases the surface roughness and the surface area/volume ratio resulting in enhancing the adsorption ability of the device. In addition, the use of nanoparticles by rapid evaporation method on the catalytic metal can increase the surface area and enhance the “spill-over” effect. In the last chapter, electroless plating (EP) method was used to replace traditional thermal evaporation to form the sensing region. Compared with thermal evaporation, the process of electroless plating method has the advantages of simple operation, low temperature, low energy and short process time. The EP method not only can avoid heating damage but also cause the rougher surface, which leads to larger surface area and thus improves the adsorption ability. The use of high-quality oxide layers, electroless plating, nanoparticles and SiO2 nanospheres can cause surface leakage current reduction, adsorption ability improvement, and roughness increase resulting in promoting sensing response and sensing speed.
References
[1] S. Yamulki, R.M. Harrison, and K.W.T. Goulding, "Ammonia surface-exchange above an agricultural field in Southeast England," Atmos. Environ., vol. 30, pp. 109-118, Jan. 1996. Doi: https://doi.org/10.1016/1352-2310(95)00233-O
[2] G.K. Mani and J.B.B. Rayappan, "A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film," Sens. Actuators B, Chem., vol. 183, pp. 459-466, Jul. 2013. Doi: https://doi.org/10.1016/j.snb.2013.03.132
[3] M.A. Sutton, J.W. Erisman, F. Dentener, and D. Möllerd, "Ammonia in the environment: From ancient times to the present," Environ. Pollut., vol. 30, pp. 109-118, Jan. 1996. Doi: https://doi.org/10.1016/1352-2310(95)00233-O
[4] D. Kwak, Y. Lei, and R. Maric, "Ammonia gas sensors: A comprehensive review," Talanta, vol. 204, pp. 713-730, Nov. 2019. Doi: https://doi.org/10.1016/j.talanta.2019.06.034
[5] R. Boll, K.J. Overshott, W. Göpel, J. Hesse, and J. Zemel, Sensors, Magnetic Sensors: John Wiley & Sons; 2008.
[6] A. Mandelis, and C. Christofides, Physics, chemistry and technology of solid state gas sensor devices: John Wiley & Sons; 1993.
[7] P. Childs, J. Greenwood, and C. Long, "Review of temperature measurement," Review of scientific instruments, vol. 71, pp. 2959-2978, 2000.
[8] O. Varghese, P. Kichambre, D. Gong, K. Ong, E. Dickey, and C. Grimes, "Gas sensing characteristics of multi-wall carbon nanotubes," Sensors and Actuators B: Chemical, vol. 81, pp. 32-41, 2001.
[9] E. Snow, F. Perkins, E. Houser, S. Badescu, and T. Reinecke, "Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942-1945, 2005.
[10] Y. Joseph, B. Guse, A. Yasuda, and T. Vossmeyer, "Chemiresistor coatings from Pt-and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors," Sensors and Actuators B: Chemical, vol. 98, pp. 188-195, 2004.
[11] K.-C. Ho, and Y.-H. Tsou, "Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films," Sensors and Actuators B: Chemical, vol. 77, pp. 253-259, 2001.
[12] R.R. Reston, and E. Kolesar, "Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system," Journal of Microelectromechanical Systems, vol. 3, pp. 134-146, 1994.
[13] V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, "Toward the nanoscopic “electronic nose”: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano-and mesowire sensors," Nano letters, vol. 6, pp. 1584-1588, 2006.
[14] J.K. Abraham, B. Philip, A. Witchurch, V.K. Varadan, and C.C. Reddy, "A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor," Smart Materials and Structures, vol. 13, pp. 1045, 2004.
[15] N. Barsan, D. Koziej, and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B: Chemical, vol. 121, pp. 18-35, 2007.
[16] G. Korotcenkov, "The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors," Materials Science and Engineering: R: Reports, vol. 61, pp. 1-39, 2008.
[17] S. Semancik, R.E. Cavicchi, M. Wheeler, J. Tiffany, G. Poirier, R. Walton, J.S. Suehle, B. Panchapakesan, and D. DeVoe, "Microhotplate platforms for chemical sensor research," Sensors and Actuators B: Chemical, vol. 77, pp. 579-591, 2001.
[18] G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches," Sensors and Actuators B: Chemical, vol. 107, pp. 209-232, 2005.
[19] U. Lange, N.V. Roznyatovskaya, and V.M. Mirsky, "Conducting polymers in chemical sensors and arrays," Analytica chimica acta, vol. 614, pp. 1-26, 2008.
[20] J. Stetter, and K. Blurton, "Selective Oxidation of Hydrogen in Carbon Monoxide/Air Streams. Application to Environmental Monitoring," Industrial & Engineering Chemistry Product Research and Development, vol. 16, pp. 22-25, 1977.
[21] J. Stetter, and K. Blurton, "Portable high‐temperature catalytic reactor: Application to air pollution monitoring instrumentation," Review of Scientific Instruments, vol. 47, pp. 691-694, 1976.
[22] M. Holzinger, J. Maier, and W. Sitte, "Fast CO2-selective potentiometric sensor with open reference electrode," Solid State Ionics, vol. 86, pp. 1055-1062, 1996.
[23] J. Růz̆ic̆ka, and E. Hansen, "A new potentiometric gas sensor-the air-gap electrode," Analytica Chimica Acta, vol. 69, pp. 129-141, 1974.
[24] N. Miura, G. Lu, and N. Yamazoe, "High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode," Sensors and Actuators B: Chemical, vol. 52, pp. 169-178, 1998.
[25] A. Azad, S. Akbar, S. Mhaisalkar, L. Birkefeld, and K. Goto, "Solid‐state gas sensors: A review," Journal of the Electrochemical Society, vol. 139, pp. 3690-3704, 1992.
[26] T. Maruyama, S. Sasaki, and Y. Saito, "Potentiometric gas sensor for carbon dioxide using solid electrolytes," Solid State Ionics, vol. 23, pp. 107-112, 1987.
[27] M. Holzinger, J. Maier, and W. Sitte, "Potentiometric detection of complex gases: application to CO2," Solid State Ionics, vol. 94, pp. 217-225, 1997.
[28] N. Yamazoe, and N. Miura, "Potentiometric gas sensors for oxidic gases," Journal of electroceramics, vol. 2, pp. 243-255, 1998.
[29] B. Luther, S. Wolter, and S.E. Mohney, "High temperature Pt Schottky diode gas sensors on n-type GaN," Sensors and Actuators B: Chemical, vol. 56, pp. 164-168, 1999.
[30] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, "Hydrogen response mechanism of Pt–GaN Schottky diodes," Applied Physics Letters, vol. 80, pp. 1222-1224, 2002.
[31] O.K. Varghese, G.K. Mor, M. Paulose, and C.A. Grimes, "A titania nanotube-array room-temperature sensor for selective detection of low hydrogen concentrations," MRS Online Proceedings Library Archive, vol. 828, pp., 2004.
[32] H. Bai, and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[33] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen− sensitive MOS field− effect transistor," Applied Physics Letters, vol. 26, pp. 55-57, 1975.
[34] L.M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, "A new hydrogen sensor based on a Pt/GaAs Schottky diode," Journal of The Electrochemical Society, vol. 138, pp. 159-162, 1991.
[35] H.-I. Chen, C.-K. Hsiung, and Y.-I. Chou, "Characterization of Pd–GaAs Schottky diodes prepared by the electroless plating technique," Semiconductor science and technology, vol. 18, pp. 620, 2003. Doi: stacks.iop.org/SST/18/620
[36] H.J. Pan, K.W. Lin, K.H. Yu, C.C. Cheng, K.B. Thei, W.C. Liu, and H.I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” Electronics Letters, Institution of Engineering and Technology, pp. 92-94, 2002,
[37] I.C. Yen, C. Chia-Ming, L. Wen-Chau, and C. Huey-Ing, "A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles," IEEE Electron Device Letters, vol. 26, pp. 62-65, 2005.
[38] V. Battut, J.P. Blanc, and C. Maleysson, "Gas sensitivity of InP epitaxial thin layers," Sensors and Actuators B: Chemical, vol. 44, pp. 503-506, 1997.
[39] H.-I. Chen, and Y.-I. Chou, "Evaluation of the perfection of the Pd–InP Schottky interface from the energy viewpoint of hydrogen adsorbates," Semiconductor science and technology, vol. 19, pp. 39, 2003.
[40] H.-I. Chen, Y.-I. Chou, and C.-K. Hsiung, "Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd–InP Schottky diode," Sensors and Actuators B: Chemical, vol. 92, pp. 6-16, 2003.
[41] V. Battut, J. Blanc, E. Goumet, V. Soulière, and Y. Monteil, "NO2 sensor based on InP epitaxial thin layers," Thin solid films, vol. 348, pp. 266-272, 1999.
[42] M. Yousuf, B. Kuliyev, B. Lalevic, and T. Poteat, "Pd-InP Schottky diode hydrogen sensors," Solid-State Electronics, vol. 25, pp. 753-758, 1982.
[43] S. Roy, C. Jacob, and S. Basu, "Ohmic contacts to 3C-SiC for Schottky diode gas sensors," Solid-State Electronics, vol. 47, pp. 2035-2041, 2003.
[44] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and M. Eickhoff, "A highly stable SiC based microhotplate NO2 gas-sensor," Sensors and Actuators B: Chemical, vol. 78, pp. 216-220, 2001.
[45] A. Lloyd Spetz, L. Unéus, H. Svenningstorp, P. Tobias, L.G. Ekedahl, O. Larsson, A. Göras, S. Savage, C. Harris, P. Mårtensson, R. Wigren, P. Salomonsson, B. Häggendahl, P. Ljung, M. Mattsson, and I. Lundström, "SiC Based Field Effect Gas Sensors for Industrial Applications," physica status solidi (a), vol. 185, pp. 15-25, 2001.
[46] F. Qiu, M. Matsumiya, W. Shin, N. Izu, and N. Murayama, "Investigation of thermoelectric hydrogen sensor based on SiGe film," Sensors and Actuators B: Chemical, vol. 94, pp. 152-160, 2003.
[47] Y. Gurbuz, W.P. Kang, J.L. Davidson, and D.V. Kerns, "Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors," Sensors and Actuators B: Chemical, vol. 35, pp. 68-72, 1996.
[48] Y. Gurbuz, W.P. Kang, J.L. Davidson, D.L. Kinser, and D.V. Kerns, "Diamond microelectronic gas sensors," Sensors and Actuators B: Chemical, vol. 33, pp. 100-104, 1996.
[49] Y. Gurbuz, W.P. Kang, J.L. Davidson, and D.V. Kerns, "Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnO/sub x//diamond gas sensor," IEEE Transactions on Electron Devices, vol. 46, pp. 914-920, 1999.
[50] J. Kim, B.P. Gila, G.Y. Chung, C.R. Abernathy, S.J. Pearton, and F. Ren, "Hydrogen-sensitive GaN Schottky diodes," Solid-State Electronics, vol. 47, pp. 1069-1073, 2003.
[51] J. Song, W. Lu, J.S. Flynn, and G.R. Brandes, "AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals," Solid-state electronics, vol. 49, pp. 1330-1334, 2005. Doi: https://doi.org/10.1016/j.sse.2005.05.013
[52] D. Qiao, L.S. Yu, S.S. Lau, J.M. Redwing, J.Y. Lin, and H.X. Jiang, "Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction," Journal of Applied Physics, vol. 87, pp. 801-804, 1999.
[53] A. Imre, E. Gontier-Moya, D.L. Beke, and B. Ealet, "Auger electron spectroscopy of the kinetics of evaporation of palladium beaded films from sapphire substrate," Applied Physics A, vol. 67, pp. 469-473, 1998.
[54] T.S. Huang, and J.G. Pang, "Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs," Materials Science and Engineering: B, vol. 49, pp. 144-151, 1997.
[55] H.D. Tong, A.H.J. vanden Berg, J.G.E. Gardeniers, H.V. Jansen, F.C. Gielens, and M.C. Elwenspoek, "Preparation of palladium–silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane," Thin Solid Films, vol. 479, pp. 89-94, 2005.
[56] F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, "Interfacial processes in the Pd/a-Ge:H system," Applied Surface Science, vol. 70-71, pp. 722-726, 1993.
[57] S. Uemiya, T. Endo, R. Yoshiie, W. Katoh, and T. Kojima, "Fabrication of Thin Palladium-Silver Alloy Film by Using Electroplating Technique," MATERIALS TRANSACTIONS, vol. 48, pp. 1119-1123, 2007.
[58] D. Baudrand, and J. Bengston, "Electroless plating processes: Developing technologies for electroless nickel, palladium, and gold," Metal Finishing, vol. 93, pp. 55-57, 1995.
[59] J. Suehiro, S.-I. Hidaka, S. Yamane, and K. Imasaka, "Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor," Sensors and Actuators B: Chemical, vol. 127, pp. 505-511, 2007.
[60] L. Huang, C.S. Chen, Z.D. He, D.K. Peng, and G.Y. Meng, "Palladium membranes supported on porous ceramics prepared by chemical vapor deposition," Thin Solid Films, vol. 302, pp. 98-101, 1997.
[61] T. Pluym, S. Lyons, Q. Powell, A. Gurav, T. Kodas, L. Wang, and H. Glicksman, "Palladium metal and palladium oxide particle production by spray pyrolysis," Materials research bulletin, vol. 28, pp. 369-376, 1993.
[62] C.-M. Chang, M.-H. Hon, and C. Leu, "Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms," Rsc Advances, vol. 2, pp. 2469-2475, 2012.
[63] H.-I. Chen, K.-C. Chuang, C.-H. Chang, W.-C. Chen, I.-P. Liu, and W.-C. Liu, "Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 246, pp. 408-414, 2017.
[64] C.-C. Chen, H.-I. Chen, I.-P. Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
[65] D. Filippini and I. Lundström, "Hydrogen detection on bare SiO2 between metal gates," J.Appl.Phys., vol. 91, pp. 3896-3903, Feb. 2002. Doi: https://doi.org/10.1063/1.1450025
[66] I.P. Liu, C.H. Chang, Y.M. Huang, and K.W. Lin, "On the ammonia sensing performance and transmission approach of a Platinum/Nickel oxide/GaN-based metal-oxide-semiconductor diode," IEEE J. Electron Devices Soc., vol. 7, pp. 476-482, Apr. 2019. Doi: https://doi.org/10.1109/JEDS.2019.2908419
[67] I.P. Liu, C.H. Chang, and B.Y. Ke, "Ammonia sensing performance of a GaN-based semiconductor diode with a solution-processed Pt/GaOx Schottky contact," ACS Applied Electronic Materials, vol. 1, pp. 1474-1481, Jul. 2019. Doi: https://doi.org/10.1021/acsaelm.9b00274
[68] H.Y. Chen and W.C. Liu, "Hydrogen sensing characteristics of a metal-oxide-semiconductor diode with bimetallic catalysts and a GaOₓ dielectric," IEEE Trans. Electron Devices, vol. PP, pp. 1-7, May. 2019. Doi: https://doi.org/10.1109/TED.2019.2917206
[69] Y. Yue, Y. Hao, J.F. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, "AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition," IEEE Electron Device Letters, vol. 29, pp. 838-840, Sep. 2008. Doi: https://doi.org/10.1109/LED.2008.2000949
[70] T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsu, H.I. Chen, and W.C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sens. Actuators B, Chem., vol. 129, pp. 292-302, Jan. 2008. Doi: https://doi.org/10.1016/j.snb.2007.08.028
[71] B.S. Kang, H.T. Wang, F. Ren, B.P. Gila, C.R. Abernathy, S.J. Pearton, J.W. Johnson, P. Rajagopal, J.C. Roberts, E.L. Piner, and K.J. Linthicum, "pH sensor using AlGaN∕GaN high electron mobility transistors with Sc2O3 in the gate region," Appl. Phys. Lett., vol. 91, pp. 012110, Jun. 2007. Doi: https://doi.org/10.1063/1.2754637
[72] H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, Dec. 2003. Doi: stacks.iop.org/SST/18/104
[73] H. I. Chen, Yen. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actu. B, vol. 85, pp. 10-18, Jun. 2002. Doi: https://doi.org/10.1016/S0925-4005(02)00044-8
[74] H. I. Chen, Y. I. Chou, C.K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,”
Sens. Actuators, B: Chem., vol. 92, pp. 6-16, 2003.
[75] H. I. Chen, Y. C. Cheng, C. H. Chang, W. C. Chen, I. P. Liu, K. W. Lin, and W. C. Liu, "Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode," Sensors and Actuators B: Chemical, vol. 247, pp. 514-519, 2017.
[76] C. S. Hsu, K. W. Lin, and W. C. Liu, "A wireless-transfer-based hydrogen gas sensing system with a Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)," IEEE Sensors Journal, vol. 13, pp. 2299-2304, 2013.
[77] C. C. Huang, H. I. Chen, I. P. Liu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, "Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)," Sensors and Actuators B: Chemical, vol. 190, pp. 913-921, 2014.
[78] D. Jewett, and A. Makrides, "Diffusion of hydrogen through palladium and palladium-silver alloys," Transactions of the Faraday Society, vol. 61, pp. 932-939, 1965.
[79] G. Alefeld and J. Völkl, “Hydrogen in metals I-basic properties,” ch 12, Berlin; Springer-Verlag, 1978.
[80] G. Alefeld and J. Völkl, “Hydrogen in metals II-Application-oriented properties,” ch 3, Berlin: Springer-Verlag, 1978.
[81] C. F. Chang, T. H. Tsai, H. I. Chen, K. W. Lin, T. P. Chen, L. Y. Chen, Y. C. Liu, and W. C. Liu, "Hydrogen sensing properties of a Pd/SiO2/AlGaN-based MOS diode," Electrochemistry Communications, vol. 11, pp. 65-67, 2009.
[82] H. Hasegawa, and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd∕ Al Ga N∕ Ga N Schottky diodes subjected to oxygen gettering," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
[83] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, "Ammonia Sensing Properties of a Pt/AlGaN/GaN Schottky Diode," IEEE Transactions on Electron Devices, vol. 58, pp. 1541-1547, 2011. Doi: https://doi.org/10.1109/TED.2011.2115245
[84] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, "The ammonia sensitivity of Pt/GaAs Schottky barrier diodes," Journal of Applied Physics, vol. 70, pp. 3348-3354, 1991.
[85] A. Spetz, M. Armgarth, and I. Lundström, "Hydrogen and ammonia response of metal‐silicon dioxide‐silicon structures with thin platinum gates," Journal of Applied Physics, vol. 64, pp. 1274-1283, 1988.
[86] C. W. Lin, H. I. Chen, T. Y. Chen, C. C. Huang, C. S. Hsu, R. C. Liu, and W. C. Liu, "On an indium–tin-oxide thin film based ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 160, pp. 1481-1484, 2011.
[87] R.L. Knight, R.H. Kadlec, H.M. Ohlendorf, “The use of treatment wetlands for petroleum industry effluents,” Environ. Sci. Technol., vol. 33, pp. 973-980, 1999.
[88] C. Malins, A. Doyle, B.D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, I. Babusik, “Personal ammonia sensor for industrial environments,” J. Environ. Monit., vol. 1, pp. 417-422, 1999.
[89] J. Song, W. Lu, J.S. Flynn, G.R. Brandes, “Pt-AlGaN/GaN Schottky diodes operated at 800 °C for hydrogen sensing,” Appl. Phys. Lett., vol. 87, p. 133501, 2005.
[90] B.S. Kang, F. Ren, B.P. Gila, C.R. Abernathy, S.J. Pearton, “AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor,” Appl. Phys. Lett., vol. 84, pp. 1123-1125, 2004.
[91] B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, S.J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,” Sens. Actuators B, vol. 104, pp. 232-236, 2005.
[92] M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, O. Ambacher, “Pt/GaN Schottky diodes for hydrogen gas sensors,” Sens. Actuators B, vol. 113, pp. 797-804, 2006.
[93] P.C. Chou, H.I. Chen, I.P. Liu, C.W. Hung, C.C. Chen, J.K. Liou, and W.C. Liu, "Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor," Sens. Actuators B, Chem., vol. 203, pp. 258-262, Nov. 2014. Doi: https://doi.org/10.1016/j.snb.2014.06.113
[94] I.P. Liu, C.H. Chang, and B.Y. Ke, " Chemical sensors with catalytic metal gates," ACS Applied Electronic Materials, vol. 1, pp. 1474-1481, Jul. 2019. Doi: https://doi.org/10.1021/acsaelm.9b00274
[95] H. Hasegawa and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering," J. Vac. Sci. Techn. B Microelectronics and Nanometer Structures, vol. 25, pp., Apr. 2007. Doi: https://doi.org/10.1116/1.2750343
[96] C. C. Chen, H. I. Chen, H. Y. Liu, P. C. Chou, J. K. Liou, and W. C. Liu, "On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 209, pp. 658-663, 2015.
[97] H. Liu, B. Chou, W. Hsu, C. Lee, and C. Ho, "A Simple Gate-Dielectric Fabrication Process for AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors," IEEE Electron Device Letters, vol. 33, pp. 997-999, 2012.
[98] P. Kumnorkaew, Y.-K. Ee, N. Tansu, and J.F. Gilchrist, "Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays," Langmuir, vol. 24, pp. 12150-12157, 2008.
[99] P.I. Stavroulakis, N. Christou, and D. Bagnall, "Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly," Materials Science and Engineering: B, vol. 165, pp. 186-189, 2009.
[100] P. Kumnorkaew, A. L. Weldon, J. F. Gilchrist, "Matching constituent fluxes for convective deposition of binary suspensions", Langmuir, vol. 26, pp. 2401-2405, Feb. 2010.
[101] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature, vol. 389, pp. 827-829, Oct. 1997.
[102] C. H. Hsu, Y. C. Chan, W. C. Chen, C. H. Chang, J. K. Liou, S. Y. Cheng, D. F. Guo, and W. C. Liu, "Study of GaN-Based LEDs With Hybrid SiO2 Microsphere/Nanosphere AntiReflection Coating as a Passivation Layer by a Rapid Convection Deposition," IEEE Transactions on Electron Devices, vol. 64, NO. 3, pp. 1134 – 1139, Mar. 2017.
[103] E.L. Murphy, and R. Good Jr, "Thermionic emission, field emission, and the transition region," Physical review, vol. 102, pp. 1464, 1956.
[104] A. Schmitz, A. Ping, M.A. Khan, Q. Chen, J. Yang, and I. Adesida, "Schottky barrier properties of various metals on n-type GaN," Semiconductor Science and Technology, vol. 11, pp. 1464, 1996.
[105] C.H. Chang, W.C. Chen, J.S. Niu, B.Y. Ke, S.Y. Cheng, K.W. Lin, and W.C. Liu, "Ammonia sensing characteristics of a Platinum (Pt) hybrid structure/GaN-based Schottky diode," IEEE Trans. Electron Devices, vol. 67, pp. 296-303, Jan. 2020. Doi: https://doi.org/10.1109/TED.2019.2953703
[106] B.Y. Ke and W.C. Liu, "Enhancement of hydrogen sensing performance of a Pd nanoparticle/Pd film/GaOx/GaN-based metal–oxide– semiconductor diode," IEEE Trans. Electron Devices, vol. 65, pp. 4577-4584, Oct. 2018. Doi: https://doi.org/10.1109/TED.2018.2865793
[107] R. Pandeeswari, B.G. Jeyaprakash, “High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature,” Sens. Actuators, B: Chem., vol. 195, pp. 206-214, 2014.
[108] V. Talwar, O. Singh, R.C. Singh, “ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor,” Sens. Actuators, B: Chem., vol. 191, pp. 276-282, 2014.
[109] C. F. Lo, C. Y. Chang, B. H. Chu, S. J. Pearton, A. Dabiran, P. P. Chow, and F. Ren, “Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors,” Appl. Phys. Lett., vol. 96, pp. 232106, 2010.
[110] C. F. Chang, T. H. Tsai, H. I. Chen, K. W. Lin, T. P. Chen, L. Y. Chen, Y. C. Liu, W. C. Liu, “Hydrogen sensing properties of a Pd/SiO2//AlGaN-based MOS diode,” Electrochem. Commun., vol. 11, pp. 65-67, 2009
[111] H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: Effects of preparation and pretreatment conditions,” Sensors and Actuators B: Chemical, vol. 108, pp. 467-472, 2005.
[112] C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, L. Y. Chen, K. Y. Chu, W. C. Liu, “Temperature-dependent hydrogen sensing characteristics of a new Pt/InAlAs Schottky diode-type sensor,” Sensors and Actuators B: Chemical,
vol. 128, no. 2, pp. 574-580, Jan. 2008.
[113] J. T. Yan and C. T. Lee, “Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode,” Sensors and Actuators B: Chemical, vol. 143, no. 1, pp. 192-197, Dec. 2009.
[114] T. H. Tsai, H. I. Chen, I. P. Liu, C. W. Hung, T. P. Chen, L. Y. Chen, Y. J. Liu, and W. C. Liu, “Investigation on a Pd–AlGaN/GaN Schottky Diode-Type Hydrogen Sensor With Ultrahigh Sensing Responses,” IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3575-3581, Dec. 2008.
[115] T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, J.S. Wu, P.C. Chou, and W.C. Liu, "Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration," Sens. Actuators B, Chem., vol. 221, pp. 491-498, Dec. 2015. Doi: https://doi.org/10.1016/j.snb.2015.06.122
[116] S.K. Lee, D. Chang, and S.W. Kim, "Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection," J. Hazard. Mater., vol. 268, pp. 110-114, Mar. 2014. Doi: https://doi.org/10.1016/j.jhazmat.2013.12.049
[117] S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, "Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite," IEEE Sens. J., vol. 11, pp. 3417-3423, Dec. 2011. Doi: https://doi.org/10.1109/JSEN.2011.2160392
[118] C.S. Hsu, H.I. Chen, C.W. Lin, T.Y. Chen, C.C. Huang, P.C. Chou, and W.C. Liu, "Ammonia gas sensing performance of an Indium Tin oxide (ITO) based device with an underlying Au-nanodot layer," J. Electrochem. Soc., vol. 160, pp. B17-B22, Nov. 2012. Doi: https://doi.org/10.1149/2.072302jes
[119] P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor," IEEE Sens. J., vol. 15, pp. 3711-3715, Jul. 2015. Doi: https://doi.org/10.1109/JSEN.2015.2391286
[120] I.P. Liu, C.H. Chang, T.C. Chou, and K.W. Lin, "Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor," Sens. Actuators B, Chem., vol. 291, pp. 148-154, Jul. 2019. Doi: https://doi.org/10.1016/j.snb.2019.04.046
[121] B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, and S.J. Pearton, "Comparison of MOS and Schottky W/Pt–GaN diodes for hydrogen detection," Sens. Actuators B, Chem., vol. 104, pp. 232-236, Jan, 2005. Doi: https://doi.org/10.1016/j.snb.2004.05.018
[122] C. Chaneliere, J.L. Autran, R.A.B. Devine, and B. Balland, "Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications," Materials Science and Engineering: R: Reports, vol. 22, pp. 269-322, May. 1998. Doi: https://doi.org/10.1016/S0927-796X(97)00023-5
[123] J. Choi, T.G. Jeong, D. Lee, S.H. Oh, Y. Jung, and Y.T. Kim, "Enhanced rate capability due to highly active Ta2O5 catalysts for lithium sulfur batteries," J. Power Sources, vol. 435, pp. 226707, Sep. 2019. Doi: https://doi.org/10.1016/j.jpowsour.2019.226707
[124] D.K. Lee, G.H. Kim, H. Sohn, and M.K. Yang, "Role of an interfacial layer in Ta2O5-based resistive switching devices for improved endurance and reliable multibit operation," physica status solidi (RRL) – Rapid Research Letters, vol. n/a, pp. 1900646, Dec. 2019. Doi: https://doi.org/10.1002/pssr.201900646
[125] M.A. Jenkins, D.Z. Austin, K.E.K. Holden, D. Allman, and J.F. Conley, "Laminate Al2O3/Ta2O5 metal/insulator/insulator/metal (MIIM) devices for high-voltage applications," IEEE Trans. Electron Devices, vol. 66, pp. 5260-5265, Dec. 2019. Doi: https://doi.org/10.1109/TED.2019.2948140
[126] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, W. C. Liu, “Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode,” Sens. Actuators, B: Chem., vol. 155, pp. 347-350, 2011.
[127] H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, I.P. Liu, T.C. Chou, and W.C. Liu, "Formaldehyde sensing characteristics of a NiO-based sensor decorated with Pd nanoparticles and a Pd thin film," IEEE Trans. Electron Devices, vol. 65, pp. 1956-1961, May. 2018. Doi: https://doi.org/10.1109/TED.2018.2819181
[128] R.J. Silbey, and R.A. Alberty, Physical Chemistry, third ed., Wiley, New York, 2001.
[129] Y. Y. Tsai, C. W. Hung, S. I. Fu, P. H. Lai, H. C. Chang, H. I. Chen, and W. C. Liu, "Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottky diodes," Sensors and Actuators B: Chemical, vol. 124, pp. 535-541, 2007.
[130] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y. Chen, and W. C. Liu, "Hydrogen sensing characteristics of Pd- and Pt-Al 0.3 Ga 0.7 As metal–semiconductor (MS) Schottky diodes," Semiconductor Science and Technology, vol. 19, pp. 778, 2004.
[131] J. J. Vajo, W. Tsai, W. H. Weinberg, "Mechanistic details of the heterogeneous decomposition of ammonia on platinum", J. Phys. Chem., vol. 89, no. 15, pp. 3243-3251, Jul. 1985.
[132] J.-R. Huang, W.-C. Hsu, H.-I. Chen, and W.-C. Liu, "Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres," Sensors and Actuators B: Chemical, vol. 123, pp. 1040-1048, 2007.
[133] C.-W. Hung, H.-L. Lin, H.-I. Chen, Y.-Y. Tsai, P.-H. Lai, S.-I. Fu, H.-M. Chuang, W.-C. Liu, "Comprehensive study of a Pd–GaAs high electron mobility transistor (HEMT)-based hydrogen sensor," Sensors and Actuators B: Chemical, vol. 122, pp. 81-88, 2007.
[134] T.-H. Tsai, H.-I. Chen, K.-W. Lin, Y.-W. Kuo, C.-F. Chang, C.-W. Hung, L.-Y. Chen, T.-P. Chen, Y.-C. Liu, W.-C. Liu, "SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 136, pp. 338-343, 2009.
[135] O.J. Adlhart, P. Rohonyi, P. Modroukas, J. Driller, “A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications,”
Asaio J, vol. 43, pp. 214-219, 1997.
[136] Y. Wakisaka, M. Mure, T. Kabutomori, H. Takeda, S. Shimizu, S. Ino, T. Ifukube, “Application of hydrogen absorbing alloys to medical and rehabilitation equipment,” IEEE Transactions on Rehabilitation Engineering, vol. 5, pp. 148-157, 1997.
[137] James A. Ritter and Armin D. Ebner, “State‐of‐the‐Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries,” Separation Science and Technology, vol. 42, no. 6, pp. 1123-1193, 2006.
[138] Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, and T. Wang, "High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide," Journal of Materials Chemistry A, vol. 3, pp. 1317-1324, 2015.
[139] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D. P. Anderson, G. G. Andersson, W. Wlodarski, "Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films," International Journal of Hydrogen Energy, vol. 38, pp. 12865-12877, 2013.
[140] N. H. Al-Hardan, M. J. Abdullah, and A. A. Aziz, "Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films," International Journal of Hydrogen Energy, vol. 35, pp. 4428-4434, 2010.
[141] I. Dincer, “Environmental an sustainability aspects of hydrogen and fuel cell systems,” Int. J. Energy Res., vol. 31, pp. 29-55, 2007.
[142] Takayoshi Oshima, Takeya Okuno and Shizuo Fujita, “Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors,” Japanese Journal of Applied Physics, vol. 46, no. 11, pp. 7217-7220, 2007.
[143] C. J. Kim, D. Kang, I. Song, J. C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J. C. Lee, and Y. Park, in Internal Electron Devices Meeting, pp. 11–13, 2006.
[144] Masataka Higashiwaki, Kohei Sasaki, Akito Kuramata, Takekazu Masui, and Shigenobu Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett. Vol. 100, no. 1, pp. 013504, 2012.
[145] Masataka Higashiwaki, Kohei Sasaki1, Hisashi Murakami, Yoshinao Kumagai, Akinori Koukitu, Akito Kuramata, Takekazu Masui, and Shigenobu Yamakoshi, “Recent progress in Ga2O3 power devices,” Semiconductor Science and Technology, vol. 31, no. 3, pp. 034001, 2016.
[146] Wan Sik Hwang, Amit Verma, Hartwin Peelaers, Vladimir Protasenko, Sergei Rouvimov, Huili (Grace) Xing, Alan Seabaugh, Wilfried Haensch, Chris Van de Walle, Zbigniew Galazka, Martin Albrecht, Roberto Fornari, and Debdeep Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Applied Physics Letters, vol. 104, no. 20, pp. 203111, 2014.
[147] M Ogita, K Higo, Y Nakanishi, Y Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature,” Applied Surface Science, vol. 175-176, no. 15, pp. 721-725, May 2001.
[148] T. R. Rashid, D. T. Phan, and G. S. Chung, "A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape," Sensors and Actuators B: Chemical, vol. 185, pp. 777-784, 2013.
[149] H. I. Chen, Y. C. Cheng, C. H. Chang, W. C. Chen, I. P. Liu, K. W. Lin, W. C. Liu, “Hydrogen-sensing performance of a Pd nanoparticle/Pd film/GaN-based diode,”
Sens. Actuator B-Chem., vol. 247, pp. 514-519, 2017.
[150] I-Ping Liu, Ching-Hong Chang, Hsin-Hau Lu, Kun-Wei Lin, “Hydrogen sensing performance of a GaN-based Schottky diode with an H2O2 treatment and electroless plating approach,” Sensors and Actuators B: Chemical, vol. 296, pp. 126599, Oct. 2019.
[151] C. C. Huang, H. I. Chen, S. Y. Cheng, L. Y. Chen, T. H. Tsai, Y. C. Liu, T. Y. Chen, C. H. Hsu, W. C. Liu, “On the characteristics of an electroless plated (EP)-based pseudomorphic high electron mobility transistor (PHEMT),” Solid-State Electron., vol. 61, pp. 13-17, 2011.
[152] C. C. Chen, H. I. Chen, I. P. Liu, P. C. Chou, J. K. Liou, C. C. Huang, W. C. Liu, “Hydrogen sensing characteristics of a Pt/AlGaN/GaN heterostructure field-effect transistor (HFET) prepared by sensitization, activation, and electroless plating (EP) approaches,” Sens. Actuator B-Chem., vol. 212, pp. 127-136, 2015.
[153] B. E. Conway, R. E. White, Modern Aspects of Electrochemistry, Kluwer Academic, New York, pp. 107-124, 2002.
[154] J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, H. I. Chen, and W. C. Liu, "Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode," IEEE Sensors Journal, vol. 11, pp. 1194-1200, 2010.
[155] A. T. Ping, A. C. Schmitz, M. A. Khan, I. Adesida, “Characterisation of Pd Schottky barrier on n-type GaN,” IEEE: Electronics Letters, vol. 32, no. 1, pp.68-70, 1996.
[156] C. H. Chang, K. W. Lin, H. H. Lu, R. C. Liu, and W. C. Liu, "Hydrogen sensing performance of a Pd/HfO2/GaOx/GaN based metal-oxide-semiconductor type Schottky diode," International Journal of Hydrogen Energy, vol. 43, pp. 19816-19824, 2018.
[157] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based schottky diodes,” IEEE Trans. Electron Dev., vol. 50, pp. 2532-2538, 2003.
[158] X. H. Wang, X. L. Wang, C. Feng, H. L. Xiao, C. B. Yang, J. X. Wang, B. Z. Wang, J. X. Ran, and C. M. Wang, “Hydrogen sensors based on AlGaN/AIN/GaN Schottky diodes,” Chin. Phys. Lett., vol. 25, pp. 266-269, 2008.
[159] F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Appl. Surf. Sci., vol. 253, pp. 9525-9528, 2007.
[160] S. Y. Chiu, J. H. Tsai, H. W. Huang, K. C. Liang, T. H. Huang, K. P. Liu, T. M. Tsai, K. Y. Hsu, and W.S. Lour, “Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure,” Sens. Actuator B: Chem., vol. 141, pp. 532-537, 2009.