| 研究生: |
曾子珊 Tseng, Tzu-Shan |
|---|---|
| 論文名稱: |
基礎於土地管理模式(LADM)與三維地籍建物產權模型之語意物件設計與應用 The design and application of semantic objects based on LADM and 3D cadastral buildings |
| 指導教授: |
洪榮宏
Hong, Jung-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 253 |
| 中文關鍵詞: | 地籍建物 、建號 、權利 、義務 、LADM |
| 外文關鍵詞: | cadastral building, building number, right, duty, LADM |
| 相關次數: | 點閱:147 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著都市化的發展趨勢,各地人口逐漸往都市移動,為土地資源帶來巨大的壓力,因此人們愈來愈重視土地之垂直發展,一物多權之區分所有建物已成為現今最主要的建物型態,立體空間之權利及使用狀態也日益複雜,傳統二維地籍管理模式已無法應對逐漸複雜之建物型態,因此亟需引入三維地籍(3D Cadastre)之概念來解決相關問題。因應近年國際推動三維地籍之風潮,內政部自98年起與各縣市政府合作推動「多目標地籍圖立體圖資建置計畫」,旨在促進國內三維地籍之發展,其發展層面可分為技術面及管理面。就技術面而言,我國以建物測量成果圖所含之建物平面圖為基礎,透過數化形式獲取向量式之樓層平面圖,再配合建物竣工圖之高程資料進行拉伸,建置為三維地籍建物產權模型。就管理面而言,我國目前已發展出三維地籍建物資料標準之草案及三維地籍系統,三維地籍建物產權模型標準架構係採用開放地理空間協會(Open Geospatial Consortium,簡稱OGC)所發布之城市標記語言(City Geography Markup Language,簡稱CityGML)延伸擴充設計,側重於地籍建物之幾何描述,例如建物可由多種不同類型之牆面組成,並未涵蓋地籍建物對應之權利義務及兩者之間的關聯性。針對前述之問題,本研究將以產權之觀點切入,重新釐清與建物有關之三維空間單元及地籍操作,以土地管理模型(Land Administration Domain Model,簡稱LADM)為框架,透過延伸擴充之方式,設計三維地籍模型標準架構,以提升三維地籍建物之應用範疇。
地籍建物牽涉權利、義務、權利主體及義務主體四大元素。基於地籍建物觀點,建物內部可規劃產權建物、幢、地下、棟、層、主建物及附屬建物等不同語意之三維空間單元,屬於產權觀點之語意模式化成果。因我國係以建號為單位管理及識別建物之產權,故本研究進一步探討建號可對應之空間單元,並統一稱為建號管理單元,主要包含兩種類型,分別是主建物及主建物+附屬建物。基於權利及權利主體觀點,所有權、使用權及抵押權為建物產權交易中最常見之權利,權利主體分別為所有權人、使用權人及抵押權人。基於義務及義務主體觀點,地籍建物常見之義務如繳納房屋稅,可由房屋所有權人或使用權人負責繳納。三維地籍模型標準架構設計之重點為具體涵蓋各類三維空間單元及地籍操作之基本特性,各單元之設計涵蓋識別性、語意與主題屬性、空間性、階層性、空間關係及時間版本等六項考量,再引入國際接受度較高之LADM標準架構,透過繼承延伸之方式,定義我國地籍建物相關法規及操作所描述之空間單元及相關文件記錄,以標準化形式加強三維地籍建物之應用成效。最後實際套用於資料庫管理系統,驗證三維地籍模型標準架構之可操作性及實用性,並結合高雄市政府提供之三維地籍建物產權模型資料,展示地籍資料三維化之成果。由於本研究明確定義了地籍建物相關空間單元,包含產權建物空間單元、幢空間單元、地下空間單元、棟空間單元、層空間單元、建號管理單元、主建物空間單元及附屬建物空間單元,可被視為一種基於建物登記之語意模式化成果,對於建物內部狀態之描述提供物件化之成果,配合測繪技術所建立建物外觀為主之三維建物,可構成更為完整的描述狀態,滿足三維數位城市發展之各類應用需求。除了促進跨域應用外,也可作為各類空間單元之參考,達到空間賦能(Spatial Enabling)之目標,對於我國三維地理資訊之推動具有指標之意義。
With the development trend of urbanization, a clear trend is people are moving to cities, which brings huge pressure on how to effectively use the limited land resources. One important development is the vertical dimension of 3D buildings, which brings various and brand new challenges to the cadastre and GIS. As the traditional 2D cadastre can no longer meet the increasingly complex demands of modelling the various aspects of 3D buildings, it is urgent to introduce the concepts of 3D cadastre to subvert the traditional approach. In recent years, the Ministry of the Interior has been promoting the "Multi-purpose 3D cadastral establishment project" to facilitate the development of 3D cadastre in Taiwan. The development can be divided into technology and management aspects. In terms of technology, the project uses the result map of building survey approved and issued by the land office to establish the floor plan, and then builds the 3D building cadastral model data by linking to the height data from building construction drawings. In terms of management, the project has formulated the draft standard for 3D cadastral building and 3D cadastral system on the basis of City Geography Markup Language (CityGML). As it specifically focuses on the geometric aspect of registered buildings in the cadastral system, the rights and duties of cadastral buildings and their relationships to the 3D buildings are yet to be introduced. In response to the above challenge, the research intends to clarity the 3D spatial units and operations required for 3D cadastre systems and facilitate the design of the core of Taiwan profile based on Land Administration Domain Model (LADM). The ultimate goal is to propose a basic framework for 3D cadastral building data in Taiwan in standardized way and improve the interoperability of cross-domain applications.
The right and duty of cadastral building data involves four major elements: (1)right, (2)duty, (3)subject of right, and (4)subject of duty. The interior of the cadastral building can be modelled by a variety of 3D spatial units with different semantics, such as cadastral building, building blocks, underground, building, floor, main building, and accessory building. Since the building cadastral data in Taiwan is managed and identified by building number, the research proposes to model the spatial unit and its unique building number by a feature type named “building number administrative unit”. It has two types: (1) only main building and (2) main building+accessory building. From the perspective of right and subject of right, the commonly used rights in cadastral transactions include ownership, usufruct, and mortgage. Each of them can correspond to specific subject of rights, namely owner, user, and mortgagee. Both of them must be considered in the profile design. From the perspective of duty and subject of duty, the major duty related to cadastral buildings is the house tax. The house tax is the property tax levied on the owners or users to the house they hold or use. With the goal of appropriately modelling the necessary characteristics of buildings and their related data in Taiwan profile, the research summarizes six common types of characteristics, namely semantics and thematic attribute, identifier, spatial data model, hierarchy, spatial relationship, and time version, for feature type design, and proposes a schema for the primitive feature class design for 3D cadastre data based on LADM. Finally, the proposed Taiwan profile is used for developing the database management system to verify the operability of the profile with the 3D building cadastral data provided by the Kaohsiung City Government. In conclusion, this research comprehensively examines the current operation procedure and related regulations, then summarizes a list of 3D spatial units for cadastral buildings, including cadastral building, building blocks, underground, building, floor, main building, accessory building, and building number administrative unit. Based on such semantic modelling results of building registration, this research further combines the designed results with the 3D building data of surveying and mapping technology to meet the application demands of 3D digital cities that require 3D building data. In addition to promoting the cross-domain application of cadastral data, it can also provide references for each spatial unit to link to cross-domain data to achieve the goal of spatial enabling.
Aien, A., Kalantari, M., Rajabifard, A., Williamson, I., & Wallace, J. (2013). Towards integration of 3D legal and physical objects in cadastral data models. Land Use Policy, 35, 140-154.
Alkan, M., Koeva, M., & Gürsoy Sürmeneli, H. (2021). Integration of LADM and CityGML for 3D Cadastre of Turkey. Paper presented at the 7th International FIG 3D Cadastre Workshop 11-13 October 2021, New York, USA.
Alkan, M., & Polat, Z. (2019). Design and Determine the LADM Infrastructure for Turkey Country Profile.
Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832-843.
Álvarez Otero, J., & Lázaro, M. (2018). Education in Sustainable Development Goals Using the Spatial Data Infrastructures and the TPACK Model. Education Sciences, 8, 171. doi:https://doi.org/10.3390/educsci8040171
ANZMWG. (2015). AS/NZS ISO 19115.1:2015 Metadata.
Bentley. (2021). Mapping Singapore in 3D. From https://www.bentley.com/en/project-profiles/singapore_land_authority_3d_mapping
Blaauboer, J., Goos, J., Ledoux, H., Penninga, F., Reuvers, M., Jantien Stoter, K., . . . Commandeur, T. (2017). Technical Specifications for the Construction of 3D IMGeo-CityGML.
Brodeur, J., Coetzee, S., Danko, D., Garcia, S., & Hjelmager, J. (2019). Geographic Information Metadata—An Outlook from the International Standardization Perspective. ISPRS International Journal of Geo-Information, 8(6), 280. Retrieved from https://www.mdpi.com/2220-9964/8/6/280
Cambridge University Press. (2022). Cambridge Dictionary. From https://dictionary.cambridge.org/zht/%E8%A9%9E%E5%85%B8/%E8%8B%B1%E8%AA%9E/infrastructure
Cetl, V., Tomas, R., Kotsev, A., Lima, V. N. d., Smith, R. S., & Jobst, M. (2019). Establishing common ground through INSPIRE: the legally-driven European spatial data infrastructure. In Service-oriented mapping (pp. 63-84): Springer.
Craglia, M., & Annoni, A. (2006). INSPIRE: An innovative approach to the development of spatial data infrastructures in Europe. Conference Proceedings.
Doskocz, A. (2016). The current state of the creation and modernization of national geodetic and cartographic resources in Poland. Open Geosciences, 8(1), 579-592.
Egenhofer, M. J., & Herring, J. R. (1990). A mathematical framework for the definition of topological relations. Paper presented at the Proc. the fourth international symposium on spatial data handing.
Elizarova, G., Sapelnikoiv, S., Vandysheva, N., Van Oosterom, P., De Vries, M., Stoter, J., . . . Hoogeveen, A. (2012). Russian-Dutch project" 3D cadastre modelling in Russia". Paper presented at the 3rd International Workshop on 3D Cadastres: Developments and Practices 25-26 October 2012, Shenzhen, China.
European Commission. (2004). INSPIRE scoping paper
European Commission. (2008). Drafting Team "Data Specifications" – deliverable D2.3: Definition of Annex Themes and Scope.
European Commission. (2013). INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN ISO 19119.
European Commission. (2019). COMMISSION IMPLEMENTING DECISION (EU) 2019/1372 of 19 August 2019 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards monitoring and reporting. Official Journal of the European Union.
European Parliament and Council. (2007). Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Official Journal of the European Union.
FGDC. (2017). 2017 FGDC Annual Report.
GOOS, J., & Rotterdam, S. (2011). Towards a national 3D spatial data infrastructure: case of the Netherlands. In: Photogrammetrie-Fernerkundung-Geoinformation.
Guo, R., Li, L., He, B., Luo, P., Ying, S., Zhao, Z., & Jiang, R. (2011). 3D cadastre in China: A case study in Shenzhen City. Paper presented at the 2nd International Workshop on 3D Cadastres 16-18 November 2011, Delft, the Netherlands.
GW Prime. (2021). Virtual Singapore - Building a 3D-Empowered Smart Nation. From https://www.gwprime.geospatialworld.net/case-study/virtual-singapore-building-a-3d-empowered-smart-nation/
Huang, J., Stoter, J., Peters, R., & Nan, L. (2022). City3D: Large-Scale Building Reconstruction from Airborne LiDAR Point Clouds. Remote Sensing, 14(9), 2254. Retrieved from https://www.mdpi.com/2072-4292/14/9/2254
ISO. (2002). Geographic information - Temporal schema.
ISO. (2007). Geographic information - Geography Markup Language (GML).
ISO. (2011). Geographic information - Encoding.
ISO. (2012). Geographic information - Land Administration Domain Model (LADM)
ISO. (2015a). Geographic information - Conceptual schema language.
ISO. (2015b). Geographic information - Rules for application schema.
ISO. (2019a). DATE AND TIME FORMAT.
ISO. (2019b). Geographic information - Referencing by coordinates.
ISO. (2019c). Geographic information - Spatial schema.
Jebur, M. N., Ziaei, Z., Tehrany, M. S., & Shariff, A. R. M. (2013). A review of recent developments in national spatial data infrastructures (NSDI). International Journal of Engineering Research and Applications (IJERA), 3(4), 6-14.
Jeong, D.-H., Jang, B.-B., Lee, J.-Y., Hong, S.-I., Van Oosterom, P., de Zeeuw, K., . . . Zevenbergen, J. (2012). Initial design of an LADM-based 3D Cadastre-Case study from Korea. Paper presented at the 3rd International Workshop on 3D Cadastres: Developments and Practices 25-26 October 2012, Shenzhen, China.
Jeong, D.-H., Kim, T.-J., Nam, D.-H., Li, H.-S., & Cho, H.-k. (2011). A Review of 3D Cadastre Pilot Project and the Policy of 3D NSDI in the Republic of Korea. Paper presented at the 2nd International Workshop on 3D Cadastres 16-18 November 2011, Delft, the Netherlands.
Kalantari, M., Syahrudin, S., Rajabifard, A., Subagyo, H., & Hubbard, H. (2020). Spatial Metadata Usability Evaluation. ISPRS International Journal of Geo-Information, 9(7), 463. Retrieved from https://www.mdpi.com/2220-9964/9/7/463
Kresse, W., & Fadaie, K. (2013). ISO standards for geographic information: Springer Science & Business Media.
KU Leuven Research & Development. (2010). Spatial Data Infrastructures in The Netherlands: State of play 2010.
Löwner, M.-O., Gröger, G., Joachim, B., Biljecki, F., & Nagel, C. (2016). Proposal for a new LOD and multi-representation concept for CityGML (Vol. IV-2/W1).
Lee, B.-M., Kim, T.-J., Kwak, B.-Y., Lee, Y.-h., & Choi, J. (2015). Improvement of the Korean LADM country profile to build a 3D cadastre model. Land Use Policy, 49, 660-667. doi:https://doi.org/10.1016/j.landusepol.2015.10.012
Li, P. (2013). From PCGIAP to UN‐GGIM‐AP: A Regional Perspective on GGIM.
Masser, I. (2005). GIS worlds: creating spatial data infrastructures (Vol. 338): Esri Press Redlands.
Meng, M., Steinhardt, S., & Schubert, A. (2018). Application Programming Interface Documentation: What Do Software Developers Want? Journal of Technical Writing and Communication, 48, 295–330. doi:10.1177/0047281617721853
Minghini, M., Cetl, V., Kotsev, A., Tomas, R., & Lutz, M. (2021). INSPIRE: The entry point to Europe’s big geospatial data infrastructure. In Handbook of Big Geospatial Data (pp. 619-641): Springer.
Moellering, H., Brodeur, J., Danko, D. M., & Shin, S. (2006). Towards a North American profile of the ISO 19115 world spatial metadata standard. Paper presented at the GSDI-9 Conference Proceedings.
Mulder, A., Wiersma, G., & Van Loenen, B. (2020). Status of national open spatial data infrastructures: A comparison across continents. International Journal of Spatial Data Infrastructures Research, 15, 56-87.
Nebert, D. (2004). Developing Spatial Data Infrastructures: The SDI Cookbook.
NOAA, NODC, & NCDDC. (2012). ISO 19115 Geographic information - Metadata Workbook.
NRF. (2021). Virtual Singapore. From https://www.nrf.gov.sg/programmes/virtual-singapore
NRF, IDA, & SLA. (2014). Virtual Singapore (VS).
Oesch, D. (2014). The swiss federal geoportal www.geo.admin.ch.
OGC. (2006). Web Map Service.
OGC. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard.
OGC. (2014). Web Feature Service.
OGC. (2016). Catalogue Service.
OGC. (2018). Web Processing Service.
OGC. (2021). OGC City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard.
Ogryzek, M., Tarantino, E., & Rząsa, K. (2020). Infrastructure of the Spatial Information in the European Community (INSPIRE) Based on Examples of Italy and Poland. ISPRS International Journal of Geo-Information, 9(12). doi:https://doi.org/10.3390/ijgi9120755
Olsen, B. (2019). Integration of 3D city models in a country wide covering 3D basemap. Delft University of Technology Delft, The Netherlands
Oosterom, P. v. (2018). Best Practices 3D Cadastres - Extended version.
Quarati, A., De Martino, M., & Rosim, S. (2021). Geospatial Open Data Usage and Metadata Quality. ISPRS International Journal of Geo-Information, 10(1), 30. Retrieved from https://www.mdpi.com/2220-9964/10/1/30
Rajabifard, A., & Williamson, I. (2003a). Asia-Pacific region and SDI activities.
Rajabifard, A., & Williamson, I. (2003b). Spatial data infrastructures: concept, SDI hierarchy and future directions.
SG-SPACE Secretariat. (2012). Country Report - Singapore The Singapore National Spatial Data Infrastructure.
SIMSEK, N. C., & UZUN, B. (2017). Trends and Expectations Towards to Three-Dimensional Property System in Turkey. Paper presented at the Surveying the world of tomorrow - From digitalisation to augmented reality Helsinki, Finland, May 29–June 2, 2017.
SLA. (2021a). The GeospatialSG Programme. From https://www.sla.gov.sg/geospatial/about
SLA. (2021b). Virtual Singapore. From https://www.sla.gov.sg/geospatial/gw/virtual-singapore
Soon, K. H., & Khoo, V. H. S. (2017). Citygml Modelling for Singapore 3d National Mapping. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W7(12), 37-42. doi:https://doi.org/10.5194/isprs-archives-XLII-4-W7-37-2017
Stoter, J., Brink, L., Vosselman, G., Goos, J., Zlatanova, S., Verbree, E., . . . Nl. (2011). A generic approach for 3D SDI in The Netherlands. In.
Sulistyah, U. D., & Hong, J.-H. (2019). The use of 3D building data for disaster management: A 3D SDI perspective. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 395-402.
swisstopo. (2020). 3D Geodata in Brief.
swisstopo. (2021). Produktinformation swissBUILDINGS3D 2.0.
Tomas, R., Harrison, M., Barredo, J. I., Thomas, F., Llorente Isidro, M., Pfeiffer, M., & Čerba, O. (2015). Towards a cross-domain interoperable framework for natural hazards and disaster risk reduction information. Natural Hazards, 78(3), 1545-1563.
UN-GGIM-AP. (2017). Activity Report for The Sixth Plenary Meeting.
UN-GGIM-AP. (2018). Regional Spatial Data Infrastructure.
UN-GGIM-AP. (2020). Asia Pacific Platform for Geospatial Information Sharing.
UN-GGIM-AP. (2022). About UN-GGIM-AP. From https://www.un-ggim-ap.org/content/about-un-ggim-ap
Vandysheva, N., Ivanov, A., Pakhomov, S., Spiering, B., Stoter, J., Zlatanova, S., & Oosterom, P. (2012). Design of the 3D cadastre model and development of the prototype in the Russian Federation.
Vandysheva, N., Tikhonov, V., Oosterom, P., Stoter, J., Ploeger, H., Wouters, R., & Penkov, V. (2011). 3D Cadastre modelling in Russia.
Wei, Y., Di, L., Zhao, B., Liao, G., Chen, A., Bai, Y., & Liu, Y. (2005). The design and implementation of a grid-enabled catalogue service. Paper presented at the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05.
Wijngaarden, S., Breght, A., & Castelein, W. (2009). Implementing INSPIRE in the Netherlands. Roczniki geomatyki, 7(4), 47-56.
Williamson, I. P., Rajabifard, A., & Feeney, M.-E. F. (2003). Developing spatial data infrastructures: from concept to reality: CRC Press.
Ye, J., & Hua, K. A. (2013). Exploiting depth camera for 3d spatial relationship interpretation. Paper presented at the Proceedings of the 4th ACM Multimedia Systems Conference.
Ying, S., Guo, R., Li, L., Chen, N., & Jia, Y. (2018). An uniform real-estate registration model for China.
Ying, S., Guo, R., Li, L., & He, B. (2012). Application of 3D GIS to 3D cadastre in urban environment. Paper presented at the 3rd International Workshop on 3D Cadastres: Developments and Practices 25-26 October 2012, Shenzhen, China.
Zhang, J., Li, G., Liu, Y., Yin, P., Yu, J., & Shi, Z. (2018). The application model of 3D cadastre in practical registration for real estate in China.
Zhu, L. (2014). The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D. Remote Sensing, 6, 3075-3100. doi:https://doi.org/10.3390/rs6043075
Zlatanova, S., Rahman, A., & Shi, W. (2004). Topological models and frameworks for 3D spatial objects. Computers & Geosciences, 30, 419-428. doi:https://doi.org/10.1016/j.cageo.2003.06.004
丁远, 孙在宏, 吴长彬, & 乔伟峰. (2013). 基于 LADM 的三维地籍管理模型构建及应用. 地球信息科学学报, 15(1), 106-114.
內政部. (2020a). 109年度跨領域地形圖徵及三維地籍發展服務工作案.
內政部. (2020b). 邁向3D智慧國土-國家底圖空間資料基礎建設計畫.
內政部資訊中心. (2009). 門牌位置資料標準.
內政部資訊中心. (2019). 國土資訊系統資料標準共同規範.
內政部資訊中心. (2020). 詮釋資料標準.
立法會發展事務委員會. (2019). 空間數據共享平臺和三維數碼地圖的發展.
江渾欽. (2016). 三維地籍建物模型建置與多目標應用. 國土資訊系統通訊季刊(97), 53-63.
江渾欽. (2017). 三維地籍之發展與應用推動.
江渾欽, & 王宏仁. (2021). 由地政資料,建構3D建物模型 三維地籍建物產權模型與加値應用. GeoDigital Life 空間數位生活, 2, 36-45.
行政院經濟建設委員會. (2012). 國土資訊系統整體推動情形與未來展望. 政府機關資訊通報.
吳相忠. (2020). 地籍測量講義.
吳錫賢, 李明儒, 姜興華, & 鄭宏逵. (2017). 三維空間資訊技術之發展與應用. 中華技術期刊(114), 72-89.
李育珠. (2013). 建物所有權第一次登記之研究.
林峰田. (2015). SOA概念暨WMS、WFS、WPS實例解說.
洪榮宏. (2016). 標準制度觀點之地理資訊流通與分享. 國土資訊系統通訊季刊(100), 12-17.
洪榮宏. (2021). 加速臺灣地理資訊三維化!從標準化下手,讓資訊交流更快更好. GeoDigital Life 空間數位生活, 2, 30-35.
洪榮宏, 江渾欽, & 蘇郁婷. (2016). 土地管理之新觀點-LADM之發展. 國土資訊系統通訊季刊(97), 42-52.
洪榮宏, 蔡昌洋, & 曾子珊. (2021). 由空間資料基礎建設之觀點探討三維建物資料之發展策略. 土木水利, 48(5), 43-48.
洪榮宏, & 鄭淳謙. (2009). 階層式詮釋資料架構應用於地理資料之描述與流通之研究. 地籍測量: 中華民國地籍測量學會會刊, 28(4), 34-50.
香港特別行政區政府地政總署. (2021). 三維製圖. From https://www.landsd.gov.hk/tc/survey-mapping/mapping/3d-mapping.html
香港發展局. (2021). 空間數據共享平臺. From https://www.csdi.gov.hk/zh-hk/about-us/%e7%a9%ba%e9%96%93%e6%95%b8%e6%93%9a%e5%85%b1%e4%ba%ab%e5%b9%b3%e5%8f%b0%e8%b3%87%e8%a8%8a
高雄市政府. (2019). 107年度多目標地籍圖立體圖資建置計畫案.
曾子珊, & 洪榮宏. (2021). 由建號觀點探討三維建物空間單元之識別與應用. Paper presented at the 2021台灣地理資訊學會年會暨學術研討會.
曾子珊, & 洪榮宏. (2022). 以管理觀點探討三維建物空間單元. Paper presented at the 2022台灣地理資訊學會年會暨學術研討會.
黃品彰, 楊偉盛, & 張國楨. (2017). 結合空中與地上影像之傾斜攝影建模成效及精度評估. 中華技術期刊(116), 36-57.
廖泫銘. (2010). 街景測量車於公共設施管線資料收集與應用之初探.
臺中市政府地政局. (2022). 資料統一代碼. From https://www.land.taichung.gov.tw/download/?page=3&type_id=10065&parent_id=0