| 研究生: |
朱苡綺 Chu, I-Chi |
|---|---|
| 論文名稱: |
探討MSP58蛋白質於Wnt訊息傳遞路徑所扮演的角色 To study the role of MSP58 in Wnt signaling pathway |
| 指導教授: |
林鼎晏
Lin, Ding-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 58-kDa微小球蛋白 、Wnt訊息傳遞路徑 |
| 外文關鍵詞: | MSP58, Wnt/β-catenin signaling pathway |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Wnt/β-catenin 訊息傳遞路徑已被廣為人知與胚胎發育、細胞生長和腫瘤發展息息相關。而參與在其中的Dishevelled (Dvl)和β-catenin也扮演了很重要的角色。典型的Wnt訊號傳遞路徑是由Wnt配體與跨模受體(Frizzled)及共受體(LRP6)結合,進而使Dvl往膜上聚集且抑制GSK-3β磷酸化β-catenin,使β-catenin穩定與入核。本實驗室先前以酵母菌雙雜合系統(Yeast two-hybrid)確認Dvl2與微小球蛋白(MSP58)有蛋白質交互作用。本研究發現透過報告基因實驗和即時定量聚合酶連鎖反應檢測Wnt/β-catenin下游基因的表達,在過表達微小球蛋白(MSP58)後都有顯著性下降,表示MSP58在Wnt/β-catenin 訊息傳遞路徑中扮演的是抑制者的角色,然而其中的機制卻尚不清楚。透過免疫螢光染色得知MSP58與Dvl2共同位在細胞質和細胞核中。此外,本研究發現MSP58的過表達不會影響Dvl2和β-catenin的蛋白質穩定性與入核。在之後的研究中,將釐清MSP58抑制Wnt/β-catenin訊息傳遞路徑的分子機制,也提供Wnt/β-catenin訊息傳遞路徑如何調節腫瘤發生一個新的面向。
The Wnt/β-catenin signaling pathway controls cell fate during embryonic development and tissue homeostasis as well as participates in the cancer process. Dishevelled (Dvl) and β-catenin proteins play key roles in this pathway. Canonical Wnt signaling pathway is activated by the binding of extracellular Wnt ligand to the Frizzled (Fz) receptor and co-receptor LRP6, leading to membrane recruitment of Dvl protein and inhibition of β-catenin phosphorylation by GSK-3β, thereby β-catenin stabilization and nuclear translocation. Our previous data showed that the 58-kDa microspherule protein (MSP58) interacts with Dvl2 by yeast two-hybrid assay and overexpression of MSP58 can inhibit Wnt/Dvl2-mediated luciferase reporter and target genes expression. These results indicate that MSP58 functions as a repressor in the Wnt/β-catenin signaling pathway. However, the underlying mechanism is still unclear. Immunofluorescence staining revealed that the two proteins are colocalized both in cytoplasm and nucleus. Additionally, we showed that overexpression of MSP58 didn’t influence the protein levels of Dvl2 and β-catenin, as well as their nuclear targeting. In future studies, I will clarify additional mechanisms associated with MSP58-mediated inhibition of Wnt/β-catenin signaling pathway. This study will provide new insights into the novel regulation of Wnt/β-catenin pathway during tumorigenesis.
柯建佑,探討微小球蛋白(MSP58)與SWI/SNF複合體之間交互作用,國立成功大學生物資訊與訊息傳遞研究所碩士論文,2016。
馬郁翔,探討微小球蛋白(MSP58)與Inversin蛋白之間交互作用,國立成功大學生物科技與產業科學系碩士論文,2018。
衛生福利部統計處(2019),民國108年國人死因統計結果,檢自https://www.mohw.gov.tw/cp-16-54482-1.html (Jun. 16, 2020)。
Andersen, D.S., Raja, S.J., Colombani, J., Shaw, R.L., Langton, P.F., Akhtar, A., and Tapon, N. Drosophila MCRS2 associates with RNA polymerase II complexes to regulate transcription. Molecular and Cellular Biology 30, 4744-4755, 2010.
Angers, S., Thorpe, C.J., Biechele, T.L., Goldenberg, S.J., Zheng, N., MacCoss, M.J., and Moon, R.T. The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nature Cell Biology 8, 348-357, 2006.
Bader, A.G., Schneider, M.L., Bister, K., and Hartl, M. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene 20, 7524-7535, 2001.
Basu, S., Haase, G., and Ben-Ze'ev, A. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Research 5, 7579.1, 2016.
Benavides, M., Chow-Tsang, L.F., Zhang, J., and Zhong, H. The novel interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates cell cycle progression. Biochimica et Biophysica Acta 1833, 21-32, 2013.
Bovolenta, P., Rodriguez, J., and Esteve, P. Frizzled/RYK mediated signalling in axon guidance. Development 133, 4399-4408, 2006.
Campisi, J., and d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Reviews Molecular Cell Biology 8, 729-740, 2007.
Chan, D.W., Chan, C.Y., Yam, J.W., Ching, Y.P., and Ng, I.O. Prickle-1 negatively regulates Wnt/beta-catenin pathway by promoting Dishevelled ubiquitination/degradation in liver cancer. Gastroenterology 131, 1218-1227, 2006.
Clevers, H., and Nusse, R. Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205, 2012.
Cui, W., Cheong, A., Wang, Y., Tsuchida, Y., Liu, Y., Tremblay, K.D., and Mager, J. MCRS1 is essential for epiblast development during early mouse embryogenesis. Reproduction 159, 1-13, 2020.
Davidovic, L., Bechara, E., Gravel, M., Jaglin, X., Tremblay, S., Sík, A., Bardoni, B., and Khandjian, E. The nuclear MicroSpherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Human Molecular Genetics 15, 1525-1538, 2006.
Edeling, M., Ragi, G., Huang, S., Pavenstadt, H., and Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nature Reviews Nephrology 12, 426-439, 2016.
Gan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P., and Li, L. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. Journal of Cell Biology 180, 1087-1100, 2008.
Global Cancer Observatory (2019). Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer (Jun. 20, 2019).
Gomez-Orte, E., Saenz-Narciso, B., Moreno, S., and Cabello, J. Multiple functions of the noncanonical Wnt pathway. Trends in Genetics 29, 545-553, 2013.
Hirabayashi, Y., Itoh, Y., Tabata, H., Nakajima, K., Akiyama, T., Masuyama, N., and Gotoh, Y. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791-2801, 2004.
Hirohashi, Y., Wang, Q., Liu, Q., Du, X., Zhang, H., Sato, N., and Greene, M.I. p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene 25, 4937-4946, 2006.
Hsu, C.C., Chen, C.H., Hsu, T.I., Hung, J.J., Ko, J.L., Zhang, B., Lee, Y.C., Chen, H.K., Chang, W.C., and Lin, D.Y. The 58-kda microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor (TEIF). Biochimica et Biophysica Acta 1843, 565-579, 2014.
Hsu, C.C., Lee, Y.C., Yeh, S.H., Chen, C.H., Wu, C.C., Wang, T.Y., Chen, Y.N., Hung, L.Y., Liu, Y.W., Chen, H.K., Hsiao, Y.T., Wang, W.S., Tsou, J.H., Tsou, Y.H., Wu, M.H., Chang, W.C., and Lin, D.Y. 58-kDa microspherule protein (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway. Journal of Biological Chemistry 287, 22533-22548, 2012.
Huang, X., McGann, J.C., Liu, B.Y., Hannoush, R.N., Lill, J.R., Pham, V., Newton, K., Kakunda, M., Liu, J., Yu, C., Hymowitz, S.G., Hongo, J.A., Wynshaw-Boris, A., Polakis, P., Harland, R.M., and Dixit, V.M. Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science 339, 1441-1445, 2013.
Insinna, C., Baye, L.M., Amsterdam, A., Besharse, J.C., and Link, B.A. Analysis of a zebrafish dync1h1 mutant reveals multiple functions for cytoplasmic dynein 1 during retinal photoreceptor development. Neural Development 5, 12, 2010.
Itoh, K., Brott, B.K., Bae, G.U., Ratcliffe, M.J., and Sokol, S.Y. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. Journal of Biology 4, 3, 2005.
Ivanova, A.V., Ivanov, S.V., and Lerman, M.L. Association, mutual stabilization, and transcriptional activity of the STRA13 and MSP58 proteins. Cellular and Molecular Life Sciences 62, 471-484, 2005.
Jeoung, J.Y., Nam, H.Y., Kwak, J., Jin, H.J., Lee, H.J., Lee, B.W., Baek, J.H., Eom, J.S., Chang, E.J., Shin, D.M., Choi, S.J., and Kim, S.W. A decline in Wnt3a signaling is necessary for mesenchymal stem cells to proceed to replicative senescence. Stem Cells and Development 24, 973-982, 2015.
Kafka, A., Bacic, M., Tomas, D., Zarkovic, K., Bukovac, A., Njiric, N., Mrak, G., Krsnik, Z., and Pecina-Slaus, N. Different behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and their association to TCF1 and LEF1 upregulation. Journal of Cellular and Molecular Medicine 23, 641-655, 2019.
Kobayashi, Y., Uehara, S., Udagawa, N., and Takahashi, N. Regulation of bone metabolism by Wnt signals. Journal of Biochemistry 159, 387-392, 2016.
Kumar, D., Sharma, S., Verma, S., Kumar, P., and Ambasta, R. Role of Wnt-p53-Nox Signaling Pathway in Cancer Development and Progression. British Journal of Medicine and Medical Research 8, 651-676, 2015.
Lee, S.H., Lee, M.S., Choi, T.I., Hong, H., Seo, J.Y., Kim, C.H., and Kim, J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Scientific Reports 6, 27284, 2016.
Li, V.S., Ng, S.S., Boersema, P.J., Low, T.Y., Karthaus, W.R., Gerlach, J.P., Mohammed, S., Heck, A.J., Maurice, M.M., Mahmoudi, T., and Clevers, H. Wnt signaling inhibits proteasomal b-catenin degradation within a compositionally intact Axin1 complex. Cell 149, 1245-1256, 2012.
Lie, D.C., Colamarino, S.A., Song, H.J., Desire, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R., and Gage, F.H. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375, 2005.
Lin, D.Y., and Shih, H.M. Essential role of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration. Journal of Biological Chemistry 277, 25446-25456, 2002.
Lin, W., Dai, S.H., Chen, T., Kawai, N., Miyake, K., Okada, M., Haba, R., Yamamoto, Y., Tamiya, T., and Fei, Z. Expression of 58-kD Microspherule Protein (MSP58) is Highly Correlated with PET Imaging of Tumor Malignancy and Cell Proliferation in Glioma Patients. Cellular Physiology and Biochemistry 38, 635-645, 2016.
Liu, M., Zhou, K., Huang, Y., and Cao, Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. Journal of Experimental and Clinical Cancer Research 34, 121, 2015.
Liu, M.X., Zhou, K.C., and Cao, Y. MCRS1 overexpression, which is specifically inhibited by miR-129*, promotes the epithelial-mesenchymal transition and metastasis in non-small cell lung cancer. Molecular Cancer 13, 245, 2014.
Ma, B., Liu, B., Cao, W., Gao, C., Qi, Z., Ning, Y., and Chen, Y.G. The Wnt Signaling Antagonist Dapper1 Accelerates Dishevelled2 Degradation via Promoting Its Ubiquitination and Aggregate-induced Autophagy. Journal of Biological Chemistry 290, 12346-12354, 2015.
MacDonald, B.T., and He, X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harbor Perspectives in Biology 4, a007880, 2012.
MacDonald, B.T., Tamai, K., and He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell 17, 9-26, 2009.
Marikawa, Y., and Elinson, R.P. β-TrCP is a negative regulator of the Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mechanisms of Development 77, 75-80, 1998.
Metcalfe, C., Ibrahim, A.E., Graeb, M., de la Roche, M., Schwarz-Romond, T., Fiedler, M., Winton, D.J., Corfield, A., and Bienz, M. Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Research 70, 6629-6638, 2010.
Meunier, S., and Vernos, I. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nature Cell Biology 13, 1406-1414, 2011.
Nusse, R., and Varmus, H.E. Wnt Gene. Cell 69, 1073-1087, 1992.
Nüsslein-Volhard, C., and Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801, 1980.
Okumura, K., Zhao, M., Depinho, R.A., Furnari, F.B., and Cavenee, W.K. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 102, 2703-2706, 2005a.
Okumura, K., Zhao, M., Depinho, R.A., Furnari, F.B., and Cavenee, W.K. PTEN: A Novel Anti-Oncogenic Function Independent of Phosphatase Activity. Cell Cycle 4, 540-542, 2005b.
Pan, W.J., Pang, S.Z., Huang, T., Guo, H.Y., Wu, D., and Li, L. Characterization of function of three domains in dishevelled-1: DEP domain is responsible for membrane translocation of dishevelled-1. Cell Research 14, 324-330, 2004.
Penton, A., Wodarz, A., and Nusse, R. A Mutational Analysis of dishevelled in Drosophila Defines Novel Domains in the Dishevelled Protein as Well as Novel Suppressing Alleles of axin. Genetics 161, 747-762, 2002.
Ren, Y., Busch, R.K., Perlaky, L., and Busch, H. The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. European Journal of Biochemistry 253, 734-742, 1998.
Sharma, J., Mulherkar, S., Mukherjee, D., and Jana, N.R. Malin regulates Wnt signaling pathway through degradation of dishevelled2. Journal of Biological Chemistry 287, 6830-6839, 2012.
Sharma, M., Castro-Piedras, I., Simmons-Jr, G.E., and Pruitt, K. Dishevelled: A masterful conductor of complex Wnt signals. Cellular Signalling 47, 52-64, 2018.
Shi, H., Chen, S., Jin, H., Xu, C., Dong, G., Zhao, Q., Wang, W., Zhang, H., Lin, W., Zhang, J., Davidovic, L., Yao, L., and Fan, D. Downregulation of MSP58 inhibits growth of human colorectal cancer cells via regulation of the cyclin D1-cyclin-dependent kinase 4-p21 pathway. Cancer Science 100, 1585-1590, 2009.
Shimono, K., Shimono, Y., Shimokata, K., Ishiguro, N., and Takahashi, M. Microspherule protein 1, Mi-2beta, and RET finger protein associate in the nucleolus and up-regulate ribosomal gene transcription. Journal of Biological Chemistry 280, 39436-39447, 2005.
Shiomi, K., Uchida, H., Keino-Masu, K., and Masu, M. Ccd1, a novel protein with a DIX domain, is a positive regulator in the Wnt signaling during zebrafish neural patterning. Current Biology 13, 73-77, 2003.
Stamos, J.L., and Weis, W.I. The beta-catenin destruction complex. Cold Spring Harbor Perspectives in Biology 5, a007898, 2013.
Wang, H., Ou, J., Jian, Z., and Ou, Y. miR-186 modulates hepatocellular carcinoma cell proliferation and mobility via targeting MCRS1-mediated Wnt/beta-catenin signaling. Journal of Cellular Physiology 234, 23135-23145, 2019.
Wang, W., Li, X., Lee, M., Jun, S., Aziz, K.E., Feng, L., Tran, M.K., Li, N., McCrea, P.D., Park, J.I., and Chen, J. FOXKs promote Wnt/beta-catenin signaling by translocating DVL into the nucleus. Developmental Cell 32, 707-718, 2015.
Wei, W., Li, M., Wang, J., Nie, F., and Li, L. The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Molecular and Cellular Biology 32, 3903-3912, 2012.
Wong, H.C., Bourdelas, A., Krauss, A., Lee, H.J., Shao, Y., Wu, D., Mlodzik, M., Shi, D.L., and Zheng, J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Molecular Cell 12, 1251-1260, 2003.
Wu, P.S. The role of 58-kDa microspherule protein (MSP58) in TGF-β signaling pathway. Master Thesis. Retrieved from National Cheng Kung University of Biotechnology and Bioindustry Sciences. 2019.
Xie, J., Han, M., Zhang, M., Deng, H., and Wu, W. PP5 (PPP5C) is a phosphatase of Dvl2. Scientific Reports 8, 2715, 2018.
Yang, C.P., Chiang, C.W., Chen, C.H., Lee, Y.C., Wu, M.H., Tsou, Y.H., Yang, Y.S., Chang, W.C., and Lin, D.Y. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). Journal of Biomedical Science 22, 33, 2015.
Yang, Y. Wnt signaling in development and disease. Cell and Bioscience 2, 14, 2012.
Ye, X., Zerlanko, B., Kennedy, A., Banumathy, G., Zhang, R., and Adams, P.D. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Molecular Cell 27, 183-196, 2007.
Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873-877, 2005.
Zhang, Y., Wang, F., Han, L., Wu, Y., Li, S., Yang, X., Wang, Y., Ren, F., Zhai, Y., Wang, D., Jia, B., Xia, Y., and Chang, Z. GABARAPL1 negatively regulates Wnt/β-catenin signaling by mediating Dvl2 degradation through the autophagy pathway. Cellular Physiology and Biochemistry 27, 503-512, 2011.
Zhou, Y., Shang, H., Zhang, C., Liu, Y., Zhao, Y., Shuang, F., Zhong, H., Tang, J., and Hou, S. The E3 ligase RNF185 negatively regulates osteogenic differentiation by targeting Dvl2 for degradation. Biochemical and Biophysical Research Communications 447, 431-436, 2014.