簡易檢索 / 詳目顯示

研究生: 陳智偉
Chen, Jhin-Wei
論文名稱: 氧化亞銅於氧化鋅奈米柱之成長機制及其應用於奈米結構太陽能電池之研究
Investigations of Cu2O Growth Mechanism on ZnO nano-rods and its application to nano-structured solar cells
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 115
中文關鍵詞: 異質接面太陽能電池氧化亞銅薄膜氧化鋅奈米柱I-V曲線成長機制電化學電鍍光電轉換效率理想因子串連電阻並聯電阻
外文關鍵詞: Heterojunction solar cell, Cu2O thin film, ZnO nanorods, I-V curve, Growth mechanism, Electrochemical plating, Photovoltaic efficiency, Ideality factor, Serial resist, Shunt resist
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究內容分為兩個部分,為改善奈米結構太陽能電池的轉換效率與氧化亞銅薄膜在奈米結構上的成長機制。首先,探討奈米結構導入太陽能電池可否如預期般的改善轉換效率。其主要的製程採用三極電鍍的技術,將氧化亞銅吸收層有效的填入氧化鋅奈米柱之間隙,來達到異質結構之p-n接面。在奈米柱的成長期間,作者觀察到硝酸鋅水溶液之濃度改變從10 mM到50 mM能有效的主導奈米柱的稀疏程度。再者,奈米柱的直徑與垂直長度也隨著時間的延長而增加,作者也利用上述的結果,調配出最佳化之條件應用於奈米結構太陽能電池。接下來,將氧化亞銅吸收層係以利用三極電鍍的方法沉積在奈米柱結構上,與文獻不同之處在於,使用物理沉積的技術,如:濺鍍、熱蒸鍍,無法有效的填補入密集奈米柱之間隙。作者使用的電鍍技術不僅大幅降低製程成本與設備之需求,最關鍵突破是將氧化亞銅薄膜完整填入稀疏或是密集的奈米柱中,故方能發揮奈米結構的優勢。另一方面,氧化亞銅薄膜其主要結晶相依循著奈米柱的稀疏程度而有大幅之改變。在稀疏的奈米柱上,氧化亞銅薄膜呈現為(111)的優先結晶相;相對的,在密集的奈米柱上則氧化亞銅薄膜轉換成(200)的優先結晶相。到目前為止,還未曾有相關研究與報導。因此,本實驗室設計了實驗對照組,嘗試去了解其原因。最終的結果,顯示為氧化亞銅晶粒之成長跟銅離子流有密切的相關性。當銅離子流供給方向與氧化亞銅晶粒成長方向平行,則晶粒將會延著銅離子供給方向做延伸,最終呈現(200)為主的結晶相,其特性為縱向的柱狀體;若銅離子流供給方向與氧化亞銅晶粒成長方向垂直,則晶粒也相對延著銅離子供給方向做延伸,最終呈現(111)為主的結晶相,其特性為橫向的丘陵狀。除了上述之發現,本實驗室也針對氧化亞銅的結晶性,在不同酸鹼值(pH)的環境或是改變其成長之電流,都將有深入的探討。
    最後,作者也製作了多種奈米結構的太陽能電池元件,其接面結構如下:
    Cell A. ITO/400 nm ZnO NRs/Cu2O
    Cell B. ITO/300 nm ZnO/400 nm ZnO NRs/Cu2O
    Cell C. ITO/300 nm ZnO/400 nm ZnO NRs/Cu2O (ZnO annealed at 400 ℃)
    Cell D. ITO/80 nm ZnO/400 nm ZnO NRs/Cu2O
    Cell E. ITO/300 nm ZnO/Cu2O (flat)
    Cell F. ITO/300 nm ZnO/600 nm ZnO NRs/Cu2O

    綜合以上之結果,我們利用奈米結構結合太陽能電池,確實改善了元件的特性;也提供電鍍製程,來解決文獻中所面臨的困境。最後,奈米結構太陽能電池之光電轉換效率在樣本D獲得0.56%,其開路電壓為0.514伏、短路電流密度為2.64毫安培及填充因子為41.5%。期望可對下世代的光電元件之開發提供助益。

    This dissertation mainly investigates the proposed innovative process and improved Photovoltaic (PV) efficiency of nano-structured solar cells. The analysis is primary divided into two directions. First, we tried to ascribe how nanorod (NR) density influences on the Cu2O crystal orientation during electrochemical deposition (ECP). In order to fabricate different densities of non-doping ZnO NRs, the concentrations of Zn(NO3)2 from 10 mM to 50 mM could be used. During the ZnO NRs deposition, we observed that the Zn(NO3)2 concentration manipulated the density of NRs. In other words, the high-density of NRs will be obtained from a high Zn(NO3)2 concentration; low-concentration reveals sparse NRs. Subsequently, the Cu2O films were deposited on NRs substrate by electrochemical plating (ECP) process. The ECP process was chosen for the filling of the Cu2O film because ions in the solution can easily diffuse in between the gaps of the NRs. However, the transformation of Cu2O crystal orientation took place on different densities of NRs. The Cu2O film with (111)-preferred orientation can be obtained from a sparse NRs substrate, whereas, (200)-preferred orientation from a dense NRs substrate. Up to now, it is the first investigation about nano-rods density related to the crystal orientation of the ECP Cu2O films. To study why the Cu2O preferred growth is affected by the NRs, two electrodes, “perpendicular" and “parallel”, were used to deposit the Cu2O film with or without NRs on the ITO substrate. It has been found that the growth direction (or preferred orientation) of the Cu2O film can be manipulated by the Cu2+ ions flux. When the Cu2+ flux was perpendicular to the Cu2O nucleating surface, (200) will be the preferred orientation. On the other hand, when the Cu2+ flux parallel to the nucleating surface, Cu2O (111) is the dominated orientation. In this thesis, the influence of pH level and plating current on Cu2O preferred orientation were also investigated.
    Second, three configurations of the nano-structured ZnO NRs/Cu2O solar cells were fabricated and studied. The cell configuration and sequence of the layers in the solar cell were as follows:
    Cell A. ITO/400 nm ZnO NRs/Cu2O
    Cell B. ITO/300 nm ZnO/400 nm ZnO NRs/Cu2O
    Cell C. ITO/300 nm ZnO/400 nm ZnO NRs/Cu2O (ZnO annealed at 400 ℃)
    Cell D. ITO/80 nm ZnO/400 nm ZnO NRs/Cu2O
    Cell E. ITO/300 nm ZnO/Cu2O (flat)
    Cell F. ITO/300 nm ZnO/600 nm ZnO NRs/Cu2O
    The best photovoltaic efficiency of 0.56 % was obtained from cell D with Voc = 0.514V, Jsc= 2.64 mA/cm2 and 41.5 % fill factor.

    Abstract (in Chinese) .........................I Abstract (in English) ....................IV Acknowledgements..................VII Contents....................................VIII Table Captions .........................XI Figure Captions............................XII Chapter 1 Introduction 1.1 Cu2O/ZnO NRs heterojunction and solar cell application...................1 1.2 Review of relevant ZnO and Cu2O properties.............3 1.2.1 ZnO background and properties..................3 1.2.2 Cu2O background and properties………….…………….……......4 1.3 Thesis motivation...……………..………………………………………...11 1.4 Thesis organization..……………………………………………………...13 Reference ……...……………………………………………………………15 Chapter 2 Experimental Scheme 2.1 Experimental materials………………………………………………...22 2.1.1 Chemicals.……………………………………………………………..22 2.1.2 Targets.………………………………………………………………....22 2.1.3 Gas...…………………………………………………………………….22 2.1.4 Substrates …………………………………………….………………22 2.1.5 Equipments …………….……………………………………………..23 2.2 Process equipments.……………………………………………………….24 2.2.1 Sputter system..………………………………………………….…...24 2.2.2 Electrochemical plating (ECP)…………………………………….25 2.2.3 Annealing system..…………………………………………………...26 2.3 Analytical instruments..………….………………………………...……..26 2.3.1 Four point probe..…………………………………………………….26 2.3.2 Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDS)……………………………………………27 2.3.3 X-ray powder diffraction (XRD).……………………………………39 2.3.4 Transmission electron microscopy (TEM)..……………….…….30 2.3.5 UV-Vis spectrophotometers..……………….………………….……32 Reference.………………………………………………………………….…….34 Chapter 3 Preparation of ZnO thin films and ZnO nanorods 3.1 ZnO thin film.……………………………………………………………….43 3.1.1 Role of the ZnO thin film in this studies….………………………43 3.1.2 Process flow.…………………………………………………………..43 3.2 ZnO nanorods (NRs).……………………………………………………...44 3.2.1 Background of ZnO NRs in this studies.…………………………44 3.2.2 Process flow..……………………………………………………......45 3.2.3 Nanorods growth mechanism..…………………………………….46 3.3 Results and discussion..………………………………………...………47 3.3.1 X-ray diffraction pattern of ZnO NRs..………………………….…47 3.3.2 Optical transmittance and energy band gap..………………....48 Reference.………………………………………………………………………50 Chapter 4 Preparation of Cu2O absorber films 4.1 Process flow..…………………………….……………………………….58 4.1.1 Cu2O growth mechanism on ITO substrate……………………...59 4.2 Results and discussion..………………………………………………...60 4.2.1 X-ray diffraction patterns of the Cu2O film………………….….60 4.2.2 SEM observations of the Cu2O film surface..………………..….60 4.2.3 Optical transmittance and energy band gap……………………..60 Reference ………………………………………………………………...…….62 Chapter 5 The growth mechanism of Cu2O on ZnO nanorods 5.1 Introduction….………………………………………………………67 5.2 Experimental detail..……………………………………………………..68 5.3 Results and discussion..…………………………………………….….68 5.3.1 X-ray diffraction of Cu2O film……………………………………….68 5.3.2 SEM images of Cu2O with different growth direction……69 5.3.3 The influences of pH value and NR density on Cu2O growth....70 5.3.4 The influences of plating current and NR density on Cu2O orientation……71 5.3.5 TEM image and SAD pattern at the Cu2O/ZnO NR interface..…72 5.3.6 Sheet resistance of Cu2O films…………………………………..…72 5.4 Summary …………………………………………………………………...73 Reference ………………………………………………………………………74 Chapter 6 Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods 6.1 Review of nano-structured Cu2O solar cells….……………85 6.2 Fabrication of the nano-structured Cu2O solar cells in this study..87 6.3 Results and discussion…….………………………………………90 6.3.1 X-ray diffraction pattern of Cu2O film on NR substrate..……..90 6.3.2 The gap-fill capability of Cu2O on NR substrate……91 6.3.3 Cu2O film growth evolution on ZnO NR substrate....….92 6.3.4 Buleshift phenomenon of optical band gap on ZnO NR substrate…………94 6.3.5 Sheet resistance variation of Cu2O through annealing...94 6.3.6 Conversion efficiencies of the nano-structured Cu2O solar cells………95 6.4 Summary….……………………………………………………………….97 Reference ……………………………………………………………………….99 Chapter 7 Summary and future work 7.1 Summary…………………………………………………………………114 7.2 Future work..…………………………………………………………….116 Reference……………………………………………………………………..117

    Chapter 1.
    1 David P. Norton, Synthesis and properties of epitaxial electronic oxide thin-film materials, Mater. Sci. Eng. R 43, (2004) 139-247.
    2 C. N. R. Rao, B. Raveau, “Transition Metal Oxides”, Wiley-VCH, New York, (1998).
    3 D. C. Look, Recent advances in ZnO materials and devices, Mat. Sci. Eng. B 80, (2001) 383-387.
    4 J. F. Wager, Transparent Electronics, Science 300, 1245-1246 (2003).
    5 K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy, Appl. Phys. Lett. 87, (2005) 112106-112108.
    6 K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, T. Sakurai, Thin film deposition of Cu2O and application for solar cells, Sol. Energy 80, (2006) 715-722.
    7 S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, T. Steiner, Dilute magnetic semiconducting oxides, Semicond. Sci. Tech. 19, (2004) R59-R74.
    8 U. Ozgur, Ya .I. Alivov, C. Liu, A,Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, (2005) 041301-041403.
    9 T. Minami, New n-Type transparent conducting oxide, MRS Bull. 25,(2000) 38-44.
    10 R. G. Gordon, Criteria of choosing transparent conductors, MRS Bull. 25, (2000)52-57.
    11 R. L. Hoffman, B. J. Norris, J. F. Wager, ZnO-based transparent thin-film transistors, Appl. Phys. Lett. 82, (2003) 733-735.
    12 Z. Zhou, H. Deng, J.Y i, S.Liu, A new method for preparation of zinc oxide whiskers, Mater. Res. Bull. 34, (1999) 1563-1567.
    13 Z.Zhou, W.Peng, S. Ke, H. Deng, Tetrapod-shaped ZnO whisker and its composites, J.Mater . Proc. Tech. 89, (1999) 415-418.
    14 Y.Li, G.W.Meng, L.D.Zhang, F. Phllipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett. 76, (2000) 2011-2013.
    15 L. Vayssieres, K. Keis, A.Hagfeldt, S.E.Lindquist, Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater. 13, (2001) 4395-4398.
    16 S. Peulon, D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater. 8, (1996) 166-170.
    17 R. Konenkamp, K. Boedecker, M.C. Lux-Steiner, M. Poschenrieder, F. Zenia, C. Levy-Clement, S. Wagner, Thin film semiconductor deposition on free-standing ZnO columns, Appl. Phys. Lett. 77, (2000) 2575-2577.
    18 Otfried Madelung, Semiconductors : “Data Handbook”, Springer, 3rd edition, (2004).
    19 J. J. Loferski, Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion, J. Appl. Phys. 27, (1956) 777-784.
    20 C. A. Dimitriadis, L. Papadimitriou, N. A. Economou, Resistivity dependence of the minority carrier diffusion length in single crystals of Cu2O, J. Mat. Sci. Lett. 2, (1983) 691-693.
    21 L. C. Olsen, F. W. Addis, W. Miller, Experimental and theoretical studies of Cu2O solar cells , Sol. Cells 7, (1982) 247-249.
    22 J. Herion, E. A. Niekisch, G. Scharl, Investigation of metal oxide/cuprous oxide heterojunction solar cells, Sol. Energy Mater. & Sol. Cells 4, (1980) 101-112.
    23 L. Papadimitriou, N. A. Economou D. Trivich, Hetrojunction Solar Cell on Cuprous Oxide, Sol. Cells 3, (1981) 73-80.
    24 A. E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide—a review, Solid State Electron. 29, (1986) 7-17.
    25 J. Q. Xie, J. W. Dong, A. Osinsky, P. P. Chow, Y. W. Heo, D. P. Norton, S. J. Pearton, X. Y. Dong, C. Adelmann, C. J. Palmstrom, Progress in Semiconductor Materials V-Novel Materials and Electronic and Optoelectronic Applications, Mater. Res. Soc. Symp. 5th, (2006).
    26 K. Ellmer, Resistivity of polycrystalline zinc oxide films: current status and physical limit, J. Phys. D. Appl. Phys. 34, (2001) 3097-3108.
    27 S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, S. Niki, Phys. Status. Solidi. 1, (2004) 1067-1070.
    28 T. Maruyama, Copper oxide thin films prepared from copper dipivaloylmethanate and oxygen by chemical vapor deposition, Jpn. J. Appl. Phys. 37, (1998) 4099-4102
    29 M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, J. Phys. D Appl. Phys. 40, (2007) 3326-3329.
    30 O. Porat, I. Riess, Defect chemistry of Cu2-yO at elevated temperatures. Part II: Electrical conductivity, thermoelectric power and charged point defects, Solid
    State Ionics 81 (1995) 29-41.
    31 Y. Tsur and I. Riess, Self-compensation in semiconductors, Phys. Rev. B 60(1999) 8138-8146.
    32 Y. Tsur and I. Riess, Impurity solubility limits in ionic crystals, with application to Cu2O, Z. Phys. Chem. 207, (1998) 181-213.
    33 Y. Hames, S. Eren San, CdO/Cu2O solar cells by chemical deposition, Solar Energy 77, (2004) 291-294.
    34 H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, T. Minami, Electrical and optical properties of TCO–Cu2O heterojunction devices, Thin Solid Films 469, (2004) 80-85.
    35 R.P. Wijesundera, Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications, Semicond. Sci. Technol. 25 (2010) 045015-045019.
    36 F.Y. Hsu, S.J. Liu, Y.I. Lu, L.Y. Chen, H.W. Fang, Fabrication and characterization of oxide heterojunctions prepared by electrodepositing cuprous oxide on conductive glasses, Jpn. J. Appl. Phys. 48 (2009) 035501-035504.
    37 V. Georgieva, M. Ristov, Electrodeposited cuprous oxide on indium tin oxide for solar applications, Sol. Energy Mater. & Sol. Cells 73, (2002) 67-73.
    38 U. Ozgur, Ya .I. Alivov, C. Liu, A,Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, (2005) 041301-041403.
    39 C. H. Bates, W. B. White, R. Roy, New High-Pressure Polymorph of Zinc Oxide, Science 137, (1962) 993-993.
    40 Satischandra B. Ogale, “Thin films and Heterostructures for oxide electronics”, 2005.
    41 D. C. Look, J. W. Hemsky, J. R. Sizelove, Residual Native Shallow Donor in ZnO, Phys. Rev. Lett. 82, (1999) 2552-2555.
    42 Chris G. Van de Walle, Hydrogen as a Cause of Doping in Zinc Oxide, Phy. Rev. Lett. 85, 5 (2000) 1012-101.
    43 C. A. Wolden, T. M. Bames, J. B. Baxter, E. S. Aydil, Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films, J. Appl. Phys. 97, (2005) 043522-043528.
    44 B. Claflin, D. C. Look, S. J. Park, G. Cantwell, Persistent n-type photoconductivity in p-type ZnO , J. Cryst. Growth 287, (2006) 16-22.
    45 Y. W. Heo, S. J. Park, K. Ip, S. J. Pearton, D. P. Norton, Transport properties of phosphorus-doped ZnO thin films, Appl. Phys. Lett. 83, (2003) 1128-1130.
    46 W. Y. Ching, Y. N. Xu, K. W. Wong, Ground-state and optical properties of Cu2O and CuO crystals, Phys. Rev. B 40, (1989) 7684-7695.
    47 T. ITO, H. Yamaguchi, K. Okabe, T. Masumi, Single-crystal growth and characterization of Cu2O and CuO, J. Mater. Sci. 33, (1998) 3555-3566.
    48 H. Raebiger, S. Lany, A. Zunger, Origins of the p-type nature and cation deficiency in Cu2O and related materials, Phys. Rev. B 76, (2007) 045209-045213.
    49 A. O. Musa, T. Akomolafe, M. J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Sol. Energy Mater. & Sol. Cells 51, (1998) 305-316.
    50 S. Ishizuka, S. Kato, Y. Okamoto, K. Akimoto, Appl. Phys. Lett. 80,(2002) 950-952.
    51 Y. Nakano, S. Saeki, T. Morikawa, Optical bandgap widening of p-type Cu2O films by nitrogen doping, Appl. Phys. Lett. 94, (2009) 022111-022113.
    52 Otfried Madelung, Semiconductors : “Data Handbook”, Springer 3rd edition, (2004).
    53 G. P. Pollack, D. Trivich, Photoelectric properties of cuprous oxide, J. Appl. Phys. 46, (1975) 163-172.
    54 Grondahl, L. O. and Geiger, P. H. A new electronic rectifier. Journal of the American Institute of Electrical Engineers, 46 (1927) 216-239.
    55 Kennard, E. H. and Dieterich, E. O., An effect of light upon the contact potential of selenium and cuprous oxide, Physical Review 9, (1917) 58-63.
    56 Grondahl, L. O., The copper-cuprous-oxide rectifier and photoelectric cell, Reviews of Modern Physics 5, (1933) 141-168.
    57 Mittiga, A., Salza, E., Sarto, F., Tucci, M., and Vasanthi, R. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Appl. Phys. Lett. 88,(2006) 163502-163503.
    58 Wadia, C., Alivisatos, A. P., and Kammen, D. M., Materials availability expands the opportunity for large-scale photovoltaics deployment, Environmental Science
    & Technologies 43, (2009) 2072-2077.
    59 A.E. Rakhshani, A.A. Al-Jassar, J. Varghese, Electrodeposition and characterization of cuprous oxide, Thin Solid Films 148, (1987) 191-201.
    60 A.E. Rakhshani, J. Varghese, Surface texture in electrodeposited films of cuprous oxide, J. Mater. Sci. 23, (1988) 3847-3853.
    61 Yueh-Hsun Lee , Ing-Chi Leub, Cheng-Lung Liao , Kuan-Zong Fung, The structural evolution and electrochemical properties of the textured Cu2O thin films, Journal of Alloys and Compounds 436, (2007) 241-246.
    62 Julie K. Barton, Alexey A. Vertegel, Eric W. Bohannan, Jay A. Switzer, Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Copper, Chem. Mater. 13, (2001) 952-959.
    63 J.K. Barton, A.A. Vertegel, E.W. Bohannan, J.A. Switzer, Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Copper, Chem. Mater. 13,(2001) 952-959.
    64 R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, J.A. Switzer, Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O(110) Nanostructures on InP(111), Chem. Mater. 17, (2005) 725-729.
    65 J.J. Lofeski, Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion, J. Appl. Phys. 27, (1956) 777-784.
    66 A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Appl. Phys. Lett. 88, (2006) 163502-163503.
    67 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449, (2007) 885-889.
    68 E. C. Garnett, and P. D. Yang, Silicon nanowire radial p-n junction solar cells, J. Am. Chem. Soc. 130, (2008) 9224-9225.
    69 C. Lin, and M. L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications, Opt. Express 17, (2009) 19371-19381.
    70 Y. M. Song, J. S. Yu, and Y. T. Lee, Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement, Opt. Lett. 35,(2010) 276-278.
    71 M. Krunks, A. Katerski, T. Dedova, I. Oja Acik, A. Mere, Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array, Sol. Energy Mater. & Sol. Cells 92, (2008) 1016-1019.
    72 Ting-Jen Hsueh, Cheng-Liang Hsu, Shoou-Jinn Chang, Pei-Wen Guo, Jang-Hsing Hsieh and I-Cherng Chen, Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates, Scripta Materialia 57, (2007) 53-56.
    73 Chien-Lin Kuo, Ruey-ChiWang, Jow-Lay Huang, Chuan-Pu Liu, Chun-KaiWang, Sheng-Po Chang, Wen-Huei Chu, Chao-HungWang, Chia-hao Tu, The synthesis and electrical characterization of Cu2O/Al:ZnO radial p–n junction nanowire arrays, Nanotechnology 20, (2009) 365603-365606.
    74 L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, Strong broadband optical absorption in silicon nanowire films, J. Nanophotonics 1, (2007) 013552-013562.
    75 J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett. 9, (2009) 279-282.

    Chapter 2.
    1 G. C. Schwartz and K. V. Srikrishnam, “Handbook of semiconductor interconnection technology”, 2nd ed., CRC/Taylor & Francis, Boca Raton, FL,(2006)
    2 Model MILA-5000 Infrared Lamp Heating System Instruction Manual, in http://www.ulvac.com/download/mila-5000%20e%20disk/mila5000hard.pdf , ULVAC-RIKO Engineering Department, Inc.
    3 L.I Maissel and R. Glang, “Handbook of thin film technology”. McGraw-Hill, New Yrk.(1970).
    4 H. Buert and H. Jenett, Surface and thin film analysis: “A compendium of principles, instrumentation, applications”, Wiley-VCH, Weinheim, (2002)
    5 M. Birkholz, P. F. Fewster, and C. Genzel, “Thin film analysis by X-ray scattering”, Wiley-VCH, Weinheim, (2006)
    6 K. Wetzig and C. M. Schneider, “ Metal based thin films for electronics“, 2nd ed., Wiley-VCH, Weinheim, (2006)
    7 Hewlett-Packard's "Fundamentals of Modern UV-Visible Spectroscopy" 12-5965-512E, (1996)
    8 http://140.116.176.21/www/technique/20071112/tem2100.htm, Center for Micro/Nano Science and Technology.

    Chapter 3.
    1 M. Izaki and T. Omi, Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films, J. Electrochem. Soc. 143, (1996) L53-L55.
    2 J. Elias, R. Tena-Zaera, C. Le´vy-Cle´ment, Electrochemical deposition of ZnO nanowire arrays with tailored dimensions, Journal of Electroanalytical Chemistry 621, (2008) 171-177.
    3 H.R. Moutinho, M.M. Al-Jassim, D.H. Levi, P. Dippo, L.L. Kazmerski, Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films , J. Vac. Sci. Technol. A 16, (1998) 1251-1257.
    4 L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, Strong broadband optical absorption in silicon nanowire films, J. Nanophotonics 1 (2007) 013552-013561.
    5 P. Mitra, A.P. Chatterjee, H.S. Maiti, ZnO thin film sensor, Mater. Lett. 35, (1998) 33-38.

    Chapter 4.
    1 Takeshi Fujiwara, Takuya Nakaue, Masahiro Yoshimura, Direct fabrication and patterning of Cu2O film by local electrodeposition method, Solid State Ionics 175, (2004) 541-544.
    2 S. Leopold,z M. Herranen,* and J.-O. Carlsson, Spontaneous potential oscillations in the Cu(II)/tartrate and lactate system, aspects of mechanisms and film deposition, Journal of The Electrochemical Society 148, (2001) C513-C517.

    Chapter 5.
    1 S.Mann, The Chemistry of Form, Angew. Chem. Int. Ed. 39, (2000) 3392-3406.
    2 J. H. Adair, Morphological control of particles, E. Suvaci, Curr. Opin. Colloid Interface Sci. 5, (2000) 160-167.
    3 Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 298, (2002) 2176-2179.
    4 C. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, J. J. De Yoreo, Formation of chiral morphologies through selective binding of amino acids to calcite surface steps, Nature 411, (2001) 775-777.
    5 L. Manna, E. C. Scher, A. P. Alivisatos, Shape control of colloidal semiconductor nanocrystals, J. Cluster Sci. 13, (2002) 521-532.
    6 Z. L. Wang, Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies, J. Phys. Chem. B 104, (2000) 1153-1175.
    7 A. E Rakhshani, J. Varghese, Surface texture in electrodeposited films of cuprous oxide, Journal of Materials Science 23, (1988) 3847-3853.

    Chapter 6.
    1 F.C. Akkari, M. Kanzari, Optical, structural, and electrical properties of Cu2O thin films, Phys. Status Solidi A 207 (2010) 1647-1651.
    2 J.J. Lofeski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, J. Appl. Phys. 27 (1956) 777-784
    3 O. Porat, I. Riess, Defect chemistry of Cu2O at elevated temperatures. Part II: electrical conductivity, thermoelectric power and charged point defects, Solid State Ionics 81 (1995) 29-41
    4 Y. Tsur and I. Riess, Self-compensation in semiconductors, Phys. Rev. B 60 (1999) 8138-8146
    5 Y. Tsur and I. Riess, Impurity solubility limits in ionic crystals, with application to Cu2O, Z. Phys. Chem. 207 (1998) 181-213
    6 Y. Hames, S. Eren San, CdO/Cu2O solar cells by chemical deposition, Sol. Energy 77 (2004) 291-294.
    7 H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, T. Minami, Electrical and optical properties of TCO–Cu2O heterojunction devices, Thin Solid Films 469 (2004) 80-85.
    8 R.P. Wijesundera, Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications, Semicond. Sci. Technol. 25 (2010) 045015-045019.
    9 F.Y. Hsu, S.J. Liu, Y.I. Lu, L.Y. Chen, H.W. Fang, Fabrication and characterization of oxide heterojunctions prepared by electrodepositing cuprous oxide on conductive glasses, Jpn. J. Appl. Phys. 48 (2009) 035501-035504.
    10 V. Georgieva, M. Ristov, Electrodeposited cuprous oxide on indium tin oxide for solar applications, Sol. Energy Mater. & Sol. Cells 73 (2002) 67-73.
    11 M. Izaki, T. Shinagawa, K.T. Mizuno, Y. Ida, M. Inaba, A. Tasaka, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, J. Phys. D: Appl. Phys. 40 (2007) 3326-3329.
    12 T.J. Hsueh, C.L. Hsu, S.J. Chang, P.W. Guo, J.H. Hsieh, I. C. Chen, Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates, Scr. Mater. 57 (2007) 53-56.
    13 S.M. Chou, M.H. Hon, I.C. Leu, Y.H. Lee, Al-doped ZnO/Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates, J. Electrochem. Soc., 155 (2008) H923-H928.
    14 A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Appl. Phys. Lett. 88 (2006) 163502-163503.
    15 S. Izhizuka, S. Kato, T. Maruyama, K. Akimoto, Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering, Jpn. J. Appl. Phys. 40 (2001) 2765-2768.
    16 K.P. Muthe, J.C. Vyas, S.N. Narang, D.K. Aswal, S.K. Gupta, D, Bhattacharya, R. Pinto, G.P. Kothiyal, S.B. Sabharwal, A study of the CuO phase formation during thin film deposition by molecular beam epitaxy, Thin Solid Films 324 (1998) 37-43.
    17 K. Nakaoka, K. Ogura, Electrochemical preparation of p-Type cupric and cuprous oxides on platinum and gold substrates from copper(II) solutions with various amino acids, J. Electrochem. Soc. 149 (2002) C579-C585.
    18 K. Mukhopadhyay, A.K. Chakroborty, A.P. Chatterjee, S.K. Lahiri, Galvanostatic deposition and electrical characterization of cuprous oxide thin films, Thin Solid Films 209 (1992) 92-96.
    19 S. Joseph, P.V. Kamath, Electrochemical deposition of Cu2O on stainless steel substrates: Promotion and suppression of oriented crystallization, Solid State Sci., 10 (2008) 1215-1221.
    20 Takeshi Fujiwar, Takuya Nakaue, Masahiro Yoshimura, Direct fabrication and patterning of Cu2O film by local electrodeposition method, Solid State Ionics 175 (2004) 541-544
    21 S.J. Chang, T.J. Hsueh, C.L. Hsu, Y.R. Lin, I.C. Chen, B.R. Huang, A ZnO nanowire vacuum pressure sensor, Nanotechnology 19 (2008) 095505-095508.
    22 M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001) 1897-1899.
    23 Brendan M. Kayes, Harry A. Atwater, Nathan S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys. 97 (2005) 114302-114312.
    24 Jin-Young Jung, Zhongyi Guo, Sang-Won Jee, Han-Don Um, Kwang-Tae Park, Jung-Ho Lee, A strong antireflective solar cell prepared by tapering silicon nanowires, Opt. Express 18 (2010) A286-A292.
    25 M. Tapiero, C. Noguet, J.P. Zielinger, C. Schwab, D. Pierrat, Conversion photovoltaique dans Cu2O, Rev. Phys. Appl. 14 (1979) 231-236.
    26 X. Mathew, N.R. Mathews, P.J. Sebastian, Temperature dependence of the optical transitions in electrodeposited Cu2O thin films, Sol. Energy Mater. & Sol. Cells 70 (2001) 277-286
    27 T. Mahalingam, J.S.P. Chitra, J.P. Chu, S. Velumani, P.J. Sebastian, Structural and annealing studies of potentiostatically deposited Cu2O thin films, Sol. Energy Mater. & Sol. Cells 88 (2005) 209-216
    28 N. Ekem, Ş. Korkmaz, S. Pat, M. Z. Balbag, N. E. Çetin, M. Özmumcu, R. Vladoiu, G. Musa, ZnO thin film preparation using RF sputtering at various oxygen contents, J. Optoelectron. Adv. Mater. 10 (2008) 3279-3282
    29 S.J. Kang, Y.H. Joung, Influence of substrate temperature on the optical and piezoelectric properties of ZnO thin films deposited by rf magnetron sputtering, Appl. Surf. Sci. 253 (2007) 7330-7335
    30 V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, E. Vavrinsky, Influence of sputtering parameters on crystalline structure of ZnO thin films, Thin Solid Films 515 (2007) 8756-8760
    31 Y.H. Lee, I.C. Leu, C.L. Liao, K.Z. Fung, The structural evolution and electrochemical properties of the textured Cu2O thin films, J. Alloys Compd. 436 (2007) 241-246.

    Chapter 7.
    1 Otfried Madelung, Semiconductors : “Data Handbook”, Springer, 3rd edition, (2004).

    下載圖示 校內:2016-07-28公開
    校外:2016-07-28公開
    QR CODE