簡易檢索 / 詳目顯示

研究生: 官玫仙
Kuan, Mei-sien
論文名稱: Cisapride 作為大白鼠體內 CYP3A 活性探針性試藥之可行性
Feasibility of cisapride as an in vivo probe of CYP3A activity in rats
指導教授: 鄭靜玲
Cheng, Ching-Ling
周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: 探針性試藥cisapride細胞色素 P450 3A藥物動力學
外文關鍵詞: cisapride, pharmacokinetics, CYP3A, probe
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 簡介:
    臨床療效變異部份原因可能是藥品代謝酵素之活性差異所造成。因此,以探針性藥物來評估體內酵素活性有利於控制藥效上之變異。胃腸蠕動促進劑 cisapride 主要經由 CYP3A 代謝且其並非為 p-glycoprotein 之受質。最近文獻指出 cisapride單一口服劑量給與後八小時之血漿濃度可預測其清除率,並以 cisapride 作為探針性試藥來評估人體體內 CYP3A 活性。

    研究目的:
    本研究目的在探討使用 cisapride 靜脈注射給藥後之單一血漿濃度作為在大白鼠體內CYP3A探針性試藥之可行性。

    研究方法:
    在控制組大白鼠給與cisapride 1, 3, 5, 7.5, 10 mg/kg。而在 CYP3A 活性調整之試驗組別,經由 dexamethasone (誘導), ketoconazole (抑制)或 erythromycin (抑制) 之預處理後給與 5 mg/kg 之 cisapride。Cisapride 之血漿濃度定量至 480 分鐘,其藥物動力學參數經由非室模式來估算。另外,在大白鼠肝臟微粒體之 CY3A2 含量則以西方點墨法來測量。

    研究結果:
    劑量 1, 3, 5, 7.5, 10 mg/kg 之控制組的血中濃度曲線下面積 (AUC) 與血中濃度最佳之相關性,分別在 150, 40, 40, 150, 150 分鐘。至於在CYP3A 活性調整之試驗組別中,無論誘導組或抑制組其最佳之相關性皆在 40 分鐘。若綜合各個組別之數據,則其最佳之相關性在 90 分鐘。而大白鼠之肝臟 CYP3A2 含量與 cisapride 之 AUC 亦有線性之相關性。

    研究結論:
    大白鼠靜脈注射 cisapride 後 90 分鐘之單點血中濃度可以預測其血中濃度曲線下面積以及其清除率。顯示 cisapride 單點法為評估體內 CYP3A 活性之有效方法。

    Introduction. Variability in drug response can be attributed in part to variability in the activity of drug-metabolizing enzymes. Measuring in vivo enzyme activity by probe drugs can therefore provide valuable information for managing variability in drug response. The prokinetic agent cisapride is metabolized primarily by CYP3A and it is not a substrate of Pgp. The applicability of cisapride as a probe substrate to assess in vivo CYP3A activity in humans has been demonstrated recently. And the 8-hr plasma concentration of cisapride after a single oral dose has been served as a predictor of its clearance.

    Purpose. In this study, the applicability of a single cisapride plasma concentration as in vivo probe for CYP3A in rats was investigated following intravenous administration of cisapride.

    Methods. Rats received cisapride (1, 3, 5, 7.5 or 10 mg/kg) in the dose-linearity control groups. And in the CYP3A modulation groups, rats received 5 mg/kg cisapride after pretreatment with dexamethasone (induction), ketoconazole (inhibition), or erythromycin (inhibition). The plasma concentrations of cisapride were followed for 480 min, and the kinetic parameters were estimated by non-compartmental analysis. The contents of CYP3A2 in hepatic microsomes of rats were measured by western blotting analysis.

    Results. Optimal correlations between area under concentration-time curve (AUC) and plasma concentration in the control groups were at 150, 40, 40, 150, and 150 min for the 1, 3, 5, 7.5 or 10 mg/kg dosing groups, respectively. In the CYP3A modulation groups, correlation for the induction and inhibition groups were both optimal at 40 min. In the composite analysis of all treatments, optimal correlation occurred at 90 min. The hepatic CYP3A2 contents of rats also showed linear correlation with cisapride AUC.

    Conclusion. A single 90-min plasma concentration following intravenous administration of cisapride can predict its AUC and hence clearance in rats. Therefore, this approach represents an effective method for assessing in vivo CYP3A activity.

    中文摘要..................................................I 英文摘要................................................III 致謝......................................................V 目錄.....................................................VI 圖目錄....................................................X 表目錄.................................................XIII 第壹章 緒論..............................................1 第一節 細胞色素(Cytochrome P450..........................1 一、命名及分類............................................1 二、分布及特性............................................1 第二節 CYP3A在藥品代謝之重要性............................2 一、 藥品對CYP3A之角色....................................3 二、抑制劑分類及機轉......................................4 三、誘導劑分類及機轉......................................6 第三節 體內CYP3A探針性試藥...............................9 一、Cortisol.............................................9 二、Dapsone.............................................10 三、Erythromycin........................................11 四、Midazolam...........................................12 五、Alfentanil..........................................13 六、探針性試藥之比較....................................13 第四節 Cisapride簡介...................................16 一、物理化學性質........................................16 二、藥動特性............................................16 三、作用機轉............................................17 四、作為體內探針性試藥之相關研究........................17 第貳章 研究目的.........................................19 第參章 實驗材料、儀器及方法.............................21 第一節 實驗材料.........................................21 一、 實驗動物............................................21 二、 藥品與試劑..........................................21 第二節 實驗儀器.........................................24 一、高效液相層析系統.....................................24 二、動物插管手術及檢品處理...............................25 三、微粒體製備系統.......................................27 四、西方點墨法...........................................27 五、繪圖及藥動分析軟體...................................28 第三節 實驗方法.........................................28 一、Cisapride 血漿濃度定量分析...........................28 二、Cisapride在大白鼠之藥動試驗..........................31 三、大白鼠肝臟微粒體製備.................................34 四、大白鼠肝臟微粒體之蛋白質含量測定:Lowry method.......35 五、西方點墨法分析肝臟微粒體之CY3A2......................37 第肆章 實驗結果.........................................44 第一節 Cisapride血漿檢品定量分析........................44 一、高效液相層析圖譜.....................................44 二、校正曲線.............................................45 三、確效評估.............................................46 第二節 Cisapride在大白鼠之藥物動力學....................46 一、靜脈注射cisapride....................................46 二、併服酵素CYP3A誘導劑及抑制劑實驗......................50 三、控制組與實驗組之單點血中濃度與AUC0-inf. 之相關性.....51 第三節 肝臟微粒體之蛋白質測定:Lowry method.............63 第四節 西方點墨法CYP3A2之偵測結果.......................66 一、肝臟微粒體樣品CYP3A2含量測定法.......................66 二、體外CYP3A2蛋白質表現量與體內藥動參數之相關性.........68 第伍章 討論.............................................70 第一節 分析方法及確效...................................70 第二節 體內藥物動力學...................................70 一、靜脈注射cisapride70 二、併服酵素CYP3A誘導及抑制劑實驗........................71 三、相關性評估...........................................73 第三節 體外肝臟微粒體實驗...............................74 一、控制組及實驗組之肝臟CYP3A2蛋白質表現量的個體差異.....74 二、體外CYP3A2蛋白質表現量與體內藥動參數之相關性.........75 第陸章 結論.............................................76 參考文獻.................................................77

    Allonen H., Ziegler G., Klotz U.. Midazolam kinetics. Clin Pharmacol Ther 1981; 30: 653-661.

    Bjornsson T. D., Callaghan J. T., Einolf H. J. et al. The conduct of in vitro and in vivo drug-drug interaction studies: A pharmaceutic research and manufactures of America (PhRMA) Drug Metab Dispos 2003; 31: 815-832.

    Cotreau M. M., von Moltke L. L., Beinfeld M. C. et al. Methodologies to study the induction of rat hepatic and intestinal cytochrome P450 3A at the mRNA, protein, and catalytic activity level. J Pharmacol Toxicol Methods 2000; 43: 41-54.

    Dresser G. K., Spence J. D., Bailey D. G.. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38 (1): 41-5

    Domanski, T. L., Finta, C., Halpert, J. R. et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386-92.

    Elswood C. J., Bunce K. T., Humphrey P. P.. Identification of putative 5-HT4 receptors in guinea-pig ascending colon. Eur J Pharmacol 1991; 196 (2): 149-55.

    Fabre I, Fabre G, Maurel P et al. Metabolism of cyclosporin A. III. Interaction of the macrolide antibiotic, erythromycin, using rabbit hepatocytes and microsomal fractions. Drug Metab Dispos 1988; 16: 296-301.

    Fuhr U.. Induction of drug metabolising enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 2000; 38: 493-504.

    Ged C, Rouillon JM, Pichard L et al. The increase in urinary excretion of 6[beta]-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br J Clin Pharmacol 1989; 28: 373-387.

    Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. 2nd ed. New York: Plenum Press, 1995; 14: 473-535.
    Guitton J, Buronfosse T, Desage M et al.. Possible involvement of multiple cytochrome P450S in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 1997; 53: 1613-1619.

    Gotzkowsky SK, Kashuba ADM, Hall W et al. Poor correlation between 24-hour urinary 6[beta]-hydroxycortisol: cortisol molar ratios (CMR) and plasma midazolam clearance (MDZ CL) as measures of hepatic CYP3A activity. Clin Pharmacol Ther 1999; 65: 167.

    Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism [review]. Annu Rev Pharmacol Toxicol 1999; 39: 1-17.

    Gellner K., Eiselt R., Hustert E. et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 2001; 11: 111-21.

    Hunt CM, Watkins PB, Saenger P et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992; 51: 18-23.

    Huss J. M., Wang S. I., and Kasper C. B.. Differential glucocorticoid responses of CYP3A23 and CYP3A2 are mediated by selective binding of orphan nuclear receptors. Arch Biochem Biophys 1999; 372: 321-32.

    Honkakoski P. and Negishi M.. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000; 347: 321-37.

    Huang H, Wang H, Sinz M et al. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene 2007; 26: 258-268.

    Kronbach T, Mathys D, Umeno M et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36: 89-96.

    Kato R. and Yamazoe Y.. Sex-specific cytochrome P450 as a cause of sex- and species-related differences in drug toxicity. Toxicol Lett 1992; (64-65): 661-7.

    Kharasch ED and Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4. An explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993a; 76: 1033-1039.

    Kharasch ED, Thummell KE, Mhyre J et al. Single-dose disulfiram inhibition of chlorzoxazone metabolism: a clinical probe for P450 2E1. Clin Pharmacol Ther 1993b; 53: 643-650.

    Kinirons MT, O'Shea D, Downing TE et al. Absence of correlations among three putative in-vivo probes of human cytochrome P-4503A4 activity in young healthy men. Clin Pharmacol Ther 1993; 54: 621-629.

    Komori M., and Oda Y.. A major glucocorticoid-inducible P450 in rat liver is not P450 3A1. J Biochem (Tokyo) 1994; 116: 114-20.

    Krivoruk Y, Kinirons MT, Wood AJJ et al. Alfentanil disposition in-vivo is mediated by CYP3A4 in humans. Anesthesiology 1994; 81: A380.

    Katschinski M, Wank U, Ducree M et al. Cisapride stimulates human esophageal motility. Digestion 1995; 56 (2): 153-8.

    Kocarek T. A., Schuetz E. G., Strom S. C. et al. Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 1995; 23: 415-21.

    Kharasch ED, Russell M, Mautz D et al. The Role of Cytochrome P450 3A4 in Alfentanil Clearance: Implications for Interindividual Variability in Disposition and Perioperative Drug Interactions. Anesthesiology 1997; 87(1): 36-50.

    Kliewer S. A., Moore J. T., Wade L. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998; 92: 73-82.

    Kovacs SJ, Martin DE, Everitt DE et al. Urinary excretion of 6[beta]-hydroxycortisol as an in-vivo marker for CYP3A induction: applications and recommendations. Clin Pharmacol Ther 1998; 63: 617-622.

    Kimura M, Ieiri I, Wada Y et al. Reliability of the omeprazole hydroxylation index for CYP2C19 phenotyping: possible effect of age, liver disease, and length of therapy. Br J Clin Pharmacol 1999; 47: 115-119.

    Kinirons MT, Krivoruk Y, Wilkinson GR et al. Effects of ketoconazole on the erythromycin breath test and the dapsone recovery ratio. Br J Clin Pharmacol 1999; 47: 223-224.

    Lown KS, Kolars JC, Thummel KE et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel—lack of prediction by the erythromycin breath test. Drug Metab. Disp. 1994; 22: 947-55

    Lown KS, Thummell KE, Benedict PE et al. The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther 1995; 57: 16-24.

    Lehmann J. M., McKee D. D., Watson M. A. et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016-23.

    Lan L. B., Dalton J. T., and Schuetz E. G.. Mdr1 limits CYP3A metabolism in vivo. Mol Pharmacol 2000; 58: 863-9.

    Lowry J. A., Kearns G. L., Abdel-Rahman S. M. et al. Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin Pharmacol Ther 2003; 73: 209-22.

    Lin J. H.. CYP Induction-Mediated Drug Interactions: in Vitro Assessment and Clinical Implications. Pharmaceutical Research, 2006; 23(6): 1089-1116.

    Michiels M., Monbaliu J., Hendriks R. et al. Pharmacokinetics and tissue distribution of the new gastrokinetic agent cisapride in rat, rabbit and dog. Arzneimittelforschung 1987; 37: 1159-67.

    McCallum RW, Prakash C, Campoli-Richards DM et al. Cisapride. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use as a prokinetic agent in gastrointestinal motility disorders. Drugs 1988; 36 (6): 652-81.

    May DG, Arns PA, Richards WO et al. The disposition of dapsone in cirrhosis. Clin Pharmacol Ther 1992; 51: 689-700.

    May DG, Porter J, Wilkinson GR et al. Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population. Clin Pharmacol Ther 1994; 55: 492-500.

    Mitra AK, Thummel KE, Kalhorn TF et al. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther 1995; 58: 556-566.

    Pearce R. E., Gotschall R. R., Kearns G. L. et al. Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Drug Metab Dispos 2001; 29: 1548-54.

    Roots I, Holbe R, H¨overmann W et al. Quantitative determination by HPLC of urinary 6 -hydroxycortisol, an indicator of enzyme induction by rifampicin and antiepileptic drugs. Eur. J. Clin. Pharmacol. 1979; 16: 63-71.

    Saenger P, Forster E, Kream J.. 6 -hydroxycortisol: a noninvasive indicator of enzyme induction. J. Endocrinol. Metab. 1981; 52: 381-84.

    Saenger P. 6 -hydroxycortisol in random urine samples as an indicator of enzyme induction. Clin. Pharmacol. Ther. 1983; 34: 818-21.

    Shimada T., and Guengerich F. P.. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 1989; 86: 462-5.

    Shimada T., Yamazaki H., Mimura M. et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414-23.

    Streetman D. S., Bertino, J. S., Nafziger A. N. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000; (10): 187-216.

    Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981; 9: 503-512.
    Thummel KE, Shen DD, Podoll TD et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intraindividual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther 1994a; 271: 557-566.

    Thummel KE, Shen DD, Podoll TD et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994b; 271: 549-556.

    Thummel KE and Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389-430.

    Tham LS, Lee HS, Wang L et al. Ketoconazole renders poor CYP3A phenotype status with midazolam as probe drug. Ther Drug Monit 2006; 28(2): 255-261.

    Venkatakrishnan K, von Moltke LL, Obach RS et al. Drug Metabolism and Drug Interactions: Application and Clinical Value of In Vitro Models. Current Drug Metabolis, 2003; 4: 423-459.

    Watkins PB, Turgeon DK, Saenger P et al. Comparison of urinary 6- -cortisol and the erythromycin breath test as measures of hepatic P450IIIA (CYP3A) activity. Clin. Pharmacol. Ther. 1992; 52: 265-73.

    Waxman D. J.. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999; 369: 11-23.

    Westlind A., Malmebo S., Johansson I. et al. Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 2001; 281: 1349-55.

    楊淑珍,體外 CYP3A 活性探針性試藥之開發:Cisapride 與Delavirdine,國立成功大學臨床藥學研究所碩士論文,九十三學年度。

    黃千真,以 Midazolam 在老鼠之代謝酵素動力學探討 Ursodeoxycholic Acid 對細胞色素 3A 藥物代謝之影響,國立成功大學臨床藥學研究所碩士論文,九十一學年度。

    無法下載圖示 校內:2027-08-30公開
    校外:2027-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE