簡易檢索 / 詳目顯示

研究生: 蔡依凝
Tsai, I-Ning
論文名稱: 利用神經發展標記分析早發和成人思覺失調症及其家屬的家族聚集性與預測模組
Familial aggregation and prediction models of patients with early-onset and adult-onset schizophrenia and their nonpsychotic relatives using neurodevelopmental markers
指導教授: 林聖翔
Lin, Sheng-Hsiang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 68
中文關鍵詞: 精神分裂症內表型神經發展標記細微體質特徵軟性神經學症狀家族聚集性資料探勘再現風險比
外文關鍵詞: schizophrenia, endophenotype, neurodevelopmental markers, minor physical anomalies, neurological soft signs, familial aggregation, recurrence risk ratio, data mining
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的
    神經發育假說(Neurodevelopmental model)認為思覺失調症的發生是源自於腦部發育的異常。細微體質特徵 (Minor physical anomalies, MPAs) 與軟性神經學症狀 (Neurological soft signs, NSSs) 被認為是胚胎發育異常的神經發展標記。先前研究已經報導思覺失調症患者相對於健康對照組有較多的神經發展標記異常,但對於其家屬的神經發展標記仍無一致性的結果。另外,思覺失調症的好發年齡與疾病的徵狀十分相關,因此我們想要探討早發和成人思覺失調症的預測效度是否有差異,並且利用神經發展標記估計早發和成人思覺失調症之家族聚集性程度。
    實驗設計
    我們結合質性與量性項目改編細微體質特徵量表,測量個案的各部位特徵,並使 用神經功能評估量表 (Neurological Evaluation Scale, NES) 作為神經軟性功能的測量 工具。 研究共收集了 187 位思覺失調症病人及其 147 位家屬,與 241 位健康對照組,並測量其神經發展標記。首先,利用兩種資料探勘方法(類神經網路及決策樹)以及一種常見的統計方法(羅吉斯回歸)作為預測模組來估計神經發展標記在早發(發病年齡< 20)和成人(發病年齡≥ 20)思覺失調症的預測效度,並利用十折交叉驗證來確保模型之準確性及正確度。最後使用再現風險比分析神經發展標記在早發及成人思覺失調症的家族聚集程度。
    結果
    研究結果發現,在三個預測模組當中,類神經網路模式有較高的預測效度,以下預測效度結果僅顯示類神經網路之準確度(accuracy)。首先,在細微體質特徵(MPAs)中,在質性測量部分,早發和成人思覺失調症之準確度分別為78%及73%;在結合質性與量性測量的MPAs中,早發和成人思覺失調症之準確度分別為91%及81%。再現危險比的結果發現,質性測量的MPAs(MPAs切點 ≥ 10)早發思覺失調症家族為 4.16 (95%CI: 2.05-8.43);在成人思覺失調症家族為 2.56 (95%CI: 1.06-6.19);在結合質性與量性測量的MPAs(MPAs切點 ≥ 19)中,再現風險比在早發思覺失調症家族為 9.27 (95%CI: 3.88-22.16) ;在成人思覺失調症家族為2.47 (95%CI: 2.03-11.52)。此外,在軟性神經學症狀(NSSs)中,早發和成人思覺失調症之準確度分別為85%及78%。而再現危險比的結果發現,在感覺統合及運動協調之軟性神經學症狀的子類別中,早發思覺失調症家族之再現危險比皆大於成人思覺失調症家族。如:感覺統合(切點 ≥ 1)在早發思覺失調症家族為 2.63 (95%CI: 1.36-5.09) ,在成人思覺失調症家族為2.15 (95%CI: 1.19-3.89);運動協調(NSSs切點 ≥ 1)在早發思覺失調症家族為 24.54 (95%CI: 7.81-77.05) ,在成人思覺失調症家族為19.91 (95%CI: 6.49-61.10)。而早發及成人思覺失調症家族在其他軟性神經學症狀子類別中並沒有顯著的差異。
    結論
    據我們所知,這是第一篇探討神經發展標記在早發及成人思覺失調症及其家屬之預測效度及家族聚集性之研究。我們的研究發現神經發展標記可作為思覺失調症的一個易感受性指標,並且不論是在細微體質特徵或軟性神經學症狀,早發思覺失調症之預測效度皆比成人思覺失調症好。因此,我們認為神經發展標記可以更加準確的區分早發思覺失調症及健康對照組。此外,在顯著的細微體質特徵(MPAs)及軟性神經學症狀(NSSs)中發現早發思覺失調症家族相對于成人思覺失調症家族具有較高的家族聚集性。因此,我們的研究支持早發思覺失調症可能具有較大的家族性及基因危險因子的神經發育假說。

    Background
    The neurodevelopmental hypothesis proposes that schizophrenia is originated from abnormal brain development. Minor physical anomalies (MPAs) and neurological soft signs (NSSs) are suggested as biomarkers associated with disruptions of fetal development. Schizophrenia patients have been reported to have more deficits in neurodevelopmental markers than healthy controls, but family studies have produced different results. Moreover, the onset age of schizophrenia is related to the severity of the subsequent symptoms, and thus it may be possible to estimate the predictive abilities of neurodevelopmental markers from early-onset and adult-onset schizophrenia. We aimed to examine the familial aggregation of neurodevelopmental markers in early-onset and adult-onset schizophrenia families.
    Methods
    We developed a modified physical measurement scale composed of both qualitative and quantitative items, and used the Neurological Evaluation Scale (NES) to assess NSSs. Participants included 182 schizophrenia patients, 147 unaffected first-degree relatives of schizophrenia patients, and 241 healthy controls. First, we estimated the predictive abilities of neurodevelopmental markers between early-onset schizophrenia (EOS) (onset age < 20) and adult-onset schizophrenia (AOS) (onset age ≥ 20) using two data mining algorithms (artificial neural networks and decision trees), and a commonly used statistical method (logistic regression), we also used a 10-fold cross-validation method to measure the unbiased estimate of the prediction models. Second, we assessed the magnitude of familial aggregation for neurodevelopmental markers for EOS and AOS families using the relative recurrence-risk ratio.
    Results
    The results of artificial neural networks were significantly more accurate than the other two methods. Therefore, we only showed the accuracy of artificial neural networks. For the measurement of qualitative MPAs, the accuracies for EOS and AOS were 78% and 73%, respectively. For qualitatively and quantitative measurements of MPAs (combined MPAs), the accuracies for EOS and AOS were 91% and 81%, respectively. The recurrence risk ratio for the total score of qualitative MPAs (Cut-Off Score MPAs ≥ 10) in EOS families was 4.16 (95%CI: 2.05-8.43), and in AOS families was 2.56 (95%CI: 1.06-6.19). The combined MPAs (Cut-Off Score MPAs ≥ 19) had a higher recurrence risk ratio than qualitative MPAs. The recurrence risk ratio was 9.27 (95%CI: 3.88-22.16) in EOS families, and 2.47 (95%CI: 0.61-9.97) in AOS families. For the measurement of NSSs, the accuracies of EOS and AOS were 85% and 78%, respectively. For sensory integration and motor coordination subscale, the recurrence risk of EOS families was greater than that of AOS families in all NSS cut-off scores. For example, for the cut-off point of ≥ 1 in the Sensory Integration subscale, the results showed that risk ratios were 2.63 (95%CI: 1.36-5.09) in EOS families, and 2.15 (95%CI: 1.19-3.89) in AOS families. For the cut-off point of ≥ 1 in the motor coordination subscale, the results showed that risk ratios were 24.54 (95%CI: 7.81-77.05) in EOS families, and 19.91 (95%CI: 6.49-61.10) in AOS families. However, no significant differences were found between EOS and AOS families for the sequencing of complex motor acts subscale and the others subscale.
    Conclusion
    To our knowledge, this study was the first to examine the association between familial aggregation and the age of onset among schizophrenia patients and their relatives in terms of neurodevelopmental markers. These findings provide support for the potential of neurodevelopmental markers as a vulnerability indicator to schizophrenia. Both MPAs and NSSs had higher predictive abilities for EOS than for AOS. Therefore, neurodevelopmental markers may have more accuracy in distinguishing EOS patients from healthy controls. Furthermore, evidence suggests that EOS families might have higher familial aggregation than AOS families in terms of MPAs and NSS. Hence, the findings of this study support the neurodevelopmental hypothesis that EOS might have greater familial and genetic risks.

    中文摘要 I ABSTRACT IV TABLE OF CONTENTS VII LIST OF TABLES IX ABBREVIATION XI CHAPTER 1. INTRODUCTION 1 1.1 Introduction of schizophrenia 1 1.2 Neurodevelopmental model of schizophrenia 1 1.3 Minor physical anomalies (MPAs) in schizophrenia 3 1.4 Neurological soft signs (NSSs) in schizophrenia 3 1.5 Age of onset of schizophrenia 4 1.6 Hypothesis, Specific aims and significance 6 CHAPTER 2. METHODS AND MATERIALS 7 2.1 Participants 7 2.2 Age at onset of schizophrenia 8 2.3 Assessment of minor physical anomalies 8 2.4 Assessment of neurological soft signs 9 2.5 Prediction models 10 2.6 Statistical analyses 12 CHAPTER 3. RESULTS 13 3.1 Characteristics of onset-age of schizophrenia patients, nonpsychotic relatives, and healthy controls using MPAs and NSSs 13 3.2 Prediction models of early-onset schizophrenia and adult-onset schizophrenia using MPAs 14 3.3 Comparison of MPA scores for schizophrenia patients and nonpsychotic relatives versus healthy controls 15 3.4 Familial aggregation of MPAs in early-onset schizophrenia and adult-onset schizophrenia families using recurrence risk ratios 16 3.5 Prediction models of early-onset schizophrenia and adult-onset schizophrenia using NSSs 17 3.6 Comparison of NSS scores for patients and nonpsychotic relatives versus healthy controls 18 3.7 Familial aggregation of NSSs in for early-onset schizophrenia and adult-onset schizophrenia families using recurrence risk ratios 19 CHAPTER 4. DISCUSSION 21 4.1 Contributions 21 4.2 Predictive validities of neurodevelopmental markers in early-onset schizophrenia and adult-onset schizophrenia 22 4.3 Familial aggregation of neurodevelopmental markers in EOS and AOS 24 4.4 Sex differences in the age of onset of schizophrenia 26 4.5 Limitations 27 CHAPTER 5. CONCLUSIONS AND SUGGESTIONS 28 5.1 Conclusion 28 5.2 Suggestions 29 CHAPTER 6. REFERENCES 31 CHAPTER 7. APPENDIX 58 7.1 The Minor Physical Anomaly Survey 58 7.2 The Neurological Evaluation Scale 62

    AbdelMalik, P., Husted, J., Chow, E. W. C., & Bassett, A. S. (2003). Childhood Head Injury and Expression of Schizophrenia in Multiply Affected Families. Archives of General Psychiatry, 60, 231–236.
    Addington, A. M., Gornick, M., Sporn, A. L., Gogtay, N., Greenstein, D., Lenane, M., et al. (2004). Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biological Psychiatry, 55, 976–980.
    Akabaliev, V., Sivkov, S., Mantarkov, M., & Ahmed-Popova, F. (2011). Biomarker Profile of Minor Physical Anomalies in Schizophrenia Patients. Folia Medica, 53, 45–51.
    Aksoy-Poyraz, C., Poyraz, B. Ç., Turan, Ş., & Arıkan, M. K. (2011). Psychiatry Research. Psychiatry Research, 190, 85–90.
    Aleman, A., Kahn, R. S., & Selten, J.-P. (2003). Sex Differences in the Risk of Schizophrenia: Evidence From Meta-analysis. Archives of General Psychiatry, 60, 565–571.
    Bachmann, S., Bottmer, C., & Schröder, J. (2005). Neurological Soft Signs in First-Episode Schizophrenia: A Follow-Up Study. American Journal of Psychiatry, 162, 2337–2343.
    Biswas, P., Malhotra, S., & Malhotra, A. (2007). Comparative study of neurological soft signs in schizophrenia with onset in childhood, adolescence and adulthood. Acta Psychiatrica Scandinavica, 115, 295–303.
    Bombin, I., Arango, C., & Buchanan, R. W. (2005). Significance and Meaning of Neurological Signs in Schizophrenia: Two Decades Later. Schizophrenia Bulletin, 31, 962–977.
    Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. Chapman and Hall.
    Brown, A. S., & Susser, E. S. (2002). In utero infection and adult schizophrenia. Mental Retardation and Developmental Disabilities Research Reviews, 8, 51–57.
    Buchanan, R. W., & Heinrichs, D. W. (1989). The neurological evaluation scale (NES): A structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Research, 27, 335–350.
    Byrne, M., Agerbo, E., & Mortensen, P. B. (2002). Family history of psychiatric disorders and age at first contact in schizophrenia: an epidemiological study. The British Journal of Psychiatry, 181, s19–s25.
    Cannon, T. D. (2005). The inheritance of intermediate phenotypes for schizophrenia. Current Opinion in Psychiatry, 18, 135–140.
    Chan, R. C. K., & Gottesman, I. I. (2008). Neurological soft signs as candidate endophenotypes for schizophrenia: A shooting star or a Northern star? Neuroscience and Biobehavioral Reviews, 32, 957–971.
    Chan, R. C. K., Xu, T., Heinrichs, R. W., Yu, Y., & Wang, Y. (2009). Neurological Soft Signs in Schizophrenia: A Meta-analysis. Schizophrenia Bulletin, 36, 1089–1104.
    Chen, W. J., Liu, S. K., Chang, C.-J., Lien, Y.-J., Chang, Y.-H., & Hwu, H.-G. (1998). Sustained Attention Deficit and Schizotypal Personality Features in Nonpsychotic Relatives of Schizophrenic Patients. American Journal of Psychiatry, 155, 1214–1220.
    Chien, I.-C., Hsu, J.-H., Lin, C.-H., Bih, S.-H., Chou, Y.-J., & Chou, P. (2009). Prevalence of diabetes in patients with schizophrenia in Taiwan: a population-based National Health Insurance study. Schizophrenia Research, 111, 17–22.
    Colombet I., Ruelland A., Chatellier G., Gueyffier F., Degoulet P., & Jaulent M.C. (2000). Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. Proceedings of the AMIA Symposium, 2000,156–160.
    Compton, M. T., & Walker, E. F. (2009). Physical Manifestations of Neurodevelopmental Disruption: Are Minor Physical Anomalies Part of the Syndrome of Schizophrenia? Schizophrenia Bulletin, 35, 425–436.
    Cornblatt, B. A., Lencz, T., Smith, C. W., Correll, C. U., Auther, A. M., & Nakayama, E. (2003). The Schizophrenia Prodrome Revisited: A Neurodevelopmental Perspective. Schizophrenia Bulletin, 29, 633–651.
    Costain, G., McDonald-McGinn, D. M., & Bassett, A. S. (2013). Prenatal Genetic Testing With Chromosomal Microarray Analysis Identifies Major Risk Variants for Schizophrenia and Other Later-Onset Disorders. American Journal of Psychiatry, 170, 1498–1498.
    Calvert GA. (2001). Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cerebral cortex, 11, 1110–1123.
    Cucchetti, A., Piscaglia, F., Grigioni, A. D., Ravaioli, M., Cescon, M., & Zanello, M., et al. (2010). Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificialneural network: A pilot study. Journal of Hepatology, 52, 880–888.
    Dazzan, P., & Murray, R. M. (2002). Neurological soft signs in first-episode psychosis: a systematic review. The British Journal of Psychiatry, 181, s50–s57.
    Dazzan, P., Morgan, K. D., Orr, K. G., Hutchinson, G., & Chitnis, X. (2004). The structural brain correlates of neurological soft signs in ÆSOP first‐episode psychoses study. Brain, 127, 143–153.
    Dean, K. (2006). Grey matter correlates of minor physical anomalies in the AeSOP first-episode psychosis study. The British Journal of Psychiatry, 189, 221–228.
    DeLisi, L. E. (1992). The Significance of Age of Onset for Schizophrenia. Schizophrenia Bulletin, 18, 209–215.
    Done, D. J., Crow, T. J., Johnstone, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11. British Medical Journal, 309, 699–703.
    El-Saadi, O., Pedersen, C. B., McNeil, T. F., Saha, S., Welham, J., & O'Callaghan, E., et al. (2004). Paternal and maternal age as risk factors for psychosis: findings from Denmark, Sweden and Australia. Schizophrenia Research, 67, 227–236.
    Eranti, S. V., MacCabe, J. H., Bundy, H., & Murray, R. M. (2013). Gender difference in age at onset of schizophrenia: a meta-analysis. Psychological Medicine, 43, 155–167.
    Fatemi, S. H., & Folsom, T. D. (2009). The Neurodevelopmental Hypothesis of Schizophrenia, Revisited. Schizophrenia Bulletin, 35, 528–548.
    Fish, B. (1977). Neurobiologic Antecedents of Schizophrenia in Children: Evidence for an Inherited, Congenital Neurointegrative Defect. Archives of General Psychiatry, 34, 1297–1313.
    Frazier, J. A., Giuliano, A. J., Johnson, J. L., Yakutis, L., Youngstrom, E. A., Breiger, D., et al. (2012). Neurocognitive Outcomes in the Treatment of Early-Onset Schizophrenia Spectrum Disorders Study. Journal of the American Academy of Child & Adolescent Psychiatry, 51, 496–505.
    Gassab, L., Aissi, M., Slama, H., Gaha, L., & Mechri, A. (2013). Prevalence and score of minor physical anomalies in patients with schizophrenia and their first degree relatives: A Tunisian study. Comprehensive Psychiatry, 54, 575–580.
    Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J., & Pantelis, C. (2011). Age of Onset of Schizophrenia: Perspectives From Structural Neuroimaging Studies. Schizophrenia Bulletin, 37, 504–513.
    Gourion, D. (2004). Neurological and morphological anomalies and the genetic liability to schizophrenia: a composite phenotype. Schizophrenia Research, 67, 23–31.
    Guo, S.W. (2002). Sibling recurrence risk ratio as a measure of genetic effect: caveat emptor! The American Journal of Human Genetics, 70, 818–819.
    Hall, J. G., Froster-Iskenius, U. G., & Allanson, J. E. (1989). Handbook of Normal Physical Measurements. Oxford University Press.
    Hata, K., Iida, J., Iwasaka, H., Negoro, H. I., Ueda, F., & Kishimoto, T. (2003). Minor physical anomalies in childhood and adolescent onset schizophrenia. Psychiatry and Clinical Neurosciences, 57, 17–21.
    Holmén, A., Juuhl-Langseth, M., Thormodsen, R., Melle, I., & Rund, B. R. (2010). Neuropsychological Profile in Early-Onset Schizophrenia-Spectrum Disorders: Measured With the MATRICS Battery. Schizophrenia Bulletin, 36, 852–859.
    Howard, R., Castle, D., Wessely, S., & Murray, R. (1993). A comparative study of 470 cases of early-onset and late-onset schizophrenia. The British Journal of Psychiatry, 163, 352–357.
    Ismail, B., Cantor-Graae, E., & McNeil, T. F. (1998). Minor Physical Anomalies in Schizophrenic Patients and Their Siblings. American Journal of Psychiatry, 155, 1695–1702.
    Ismail, B., Cantor-Graae, E., & McNeil, T. F. (2000). Minor physical anomalies in schizophrenia: cognitive, neurological and other clinical correlates. Journal of psychiatric research, 34, 45–56.
    Schröder J., Wenz F., Schad L.R., Baudendistel K., & Knopp M.V. (1995). Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. The British journal of psychiatry, 167, 197–201.
    Jaaro-Peled, H., Hayashi-Takagi, A., Seshadri, S., Kamiya, A., Brandon, N. J., & Sawa, A. (2009). Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1–ErbB4 and DISC1. Trends in Neurosciences, 32, 485–495.
    James, J. W. (1971). Frequency in relatives for an all‐or‐none trait. Annals of Human Genetics, 35, 47–49.
    Jones, P. (1994). Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. The Lancet, 344, 1398–1402.
    Keshavan, M. S., Vinogradov, S., Rumsey, J., Sherrill, J., & Wagner, A. (2014). Cognitive Training in Mental Disorders: Update and Future Directions. American Journal of Psychiatry, 171, 510–522.
    Labad, A. (2010). Minor physical anomalies and schizophrenia: literature review. Actas Esp Psiquiatr, 38, 365–371.
    Lane, A., Kinsella, A., Murphy, P., Byrne, M., Keenan, J., Colgan, K., et al. (1997). The anthropometric assessment of dysmorphic features in schizophrenia as an index of its developmental origins. Psychological Medicine, 27, 1155–1164.
    Lawrie, S. M., Olabi, B., Hall, J., & Mcintosh, A. M. (2011). Do we have any solid evidence of clinical utility about the pathophysiology of schizophrenia? World Psychiatry, 10, 19–31.
    Lay, B., Blanz, B., Hartmann, M., & Schmidt, M. H. (2000). The Psychosocial Outcome of Adolescent-Onset Schizophrenia: A 12-Year Followup. Schizophrenia Bulletin, 26, 801–816.
    Liang, T. P., Moskowitz, H., & Yih, Y. (1992). Integrating Neural Networks and Semi‐Markov Processes for Automated Knowledge Acquisition: An Application to Real‐time Scheduling*. Decision Sciences, 23, 1297–1314.
    Lieberman, J. A. (1999). Is schizophrenia a neurodegenerative disorder? a clinical and neurobiological perspective. Biological Psychiatry, 46, 729–739.
    Lieberman, J. A., Stroup, T. S., & Perkins, D. O. (2007). The American Psychiatric Publishing Textbook of Schizophrenia. American Psychiatric Pub.
    Liemburg, E. J., Vercammen, A., Horst, Ter, G. J., Curcic-Blake, B., Knegtering, H., & Aleman, A. (2012). Abnormal connectivity between attentional, language and auditory networks in schizophrenia. Schizophrenia Research, 135, 15–22.
    Lilienfeld, S. O. (2014). The Research Domain Criteria (RDoC): an analysis of methodological and conceptual challenges. Behaviour research and therapy, 62, 129–139.
    Lin, A. S., Chang, S. S., Lin, S. H., Peng, Y. C., Hwu, H. G., & Chen, W. J. (2014). Minor physical anomalies and craniofacial measures in patients with treatment-resistant schizophrenia. Psychological Medicine, 45, 1839–1850.
    Lin, S. H., Liu, C. M., Chang, S. S., Hwu, H. G., Liu, S. K., Hwang, T. J., et al. (2006). Familial Aggregation in Skin Flush Response to Niacin Patch Among Schizophrenic Patients and Their Nonpsychotic Relatives. Schizophrenia Bulletin, 33, 174–182.
    Lin, Y., Ma, X., Deng, W., Han, Y., Li, M., Liu, X., et al. (2012). Psychiatry Research. Psychiatry Research, 200, 223–227.
    Lloyd, T., Dazzan, P., Dean, K., Park, S. B. G., Fearon, P., Doody, G. A., et al. (2008). Minor physical anomalies in patients with first-episode psychosis: their frequency and diagnostic specificity. Psychological Medicine, 38, 71–77.
    Malaspina, D., Harlap, S., Fennig, S., Heiman, D., Nahon, D., Feldman, D., & Susser, E. S. (2001). Advancing Paternal Age and the Risk of Schizophrenia. Archives of General Psychiatry, 58, 361–367.
    McGrath, J. J., Féron, F. P., Burne, T. H., Mackay-Sim, A., & Eyles, D. W. (2003). The neurodevelopmental hypothesis of schizophrenia: a review of recent developments. Annals of Medicine, 35, 86–93.
    McGrath, J., El-Saadi, O., Grim, V., Cardy, S., Ben Chapple, Chant, D., et al. (2002). Minor Physical Anomalies and Quantitative Measures of the Head and Face in Patients With Psychosis. Archives of General Psychiatry, 59, 458–464.
    Murray, R. M., O'callaghan, E., Castle, D. J., & Lewis, S. W. (1992). A Neurodevelopmental Approach to the Classification of Schizophrenia. Schizophrenia Bulletin, 18, 319–332.
    Neelam, K., Garg, D., & Marshall, M. (2011). A systematic review and meta-analysis of neurological soft signs in relatives of people with schizophrenia. BMC psychiatry, 11, 139.
    Nicolson, R. (2000). Lessons from childhood-onset schizophrenia. Brain Research Reviews, 31, 147–156.
    Obiols, J. E., Serrano, F., Caparrós, B., & Subirá, S. (1999). Neurological soft signs in adolescents with poor performance on the continuous performance test: markers of liability for schizophrenia spectrum disorders? Psychiatry Research, 30, 217–228.
    Owen, M. J., O'Donovan, M. C., Thapar, A., & Craddock, N. (2011). Neurodevelopmental hypothesis of schizophrenia. The British Journal of Psychiatry, 198, 173–175.
    Rabinowitz, J., & Fennig, S. (2002). Differences in age of first hospitalization for schizophrenia among immigrants and nonimmigrant in a national case registry. Schizophrenia Bulletin, 28, 491–499.
    Rabinowitz, J., Levine, S. Z., & Häfner, H. (2006). A population based elaboration of the role of age of onset on the course of schizophrenia. Schizophrenia Research, 88, 96–101.
    Rajarethinam, R., Venkatesh, B. K., Peethala, R., Phan, K. L., & Keshavan, M. (2011). Reduced activation of superior temporal gyrus during auditory comprehension in young offspring of patients with schizophrenia. Schizophrenia Research, 130, 101–105.
    Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: update 2012. Molecular Psychiatry, 17, 1228–1238.
    Risch, N. (1990). Linkage strategies for genetically complex traits. I. Multilocus models. American journal of human genetics, 46, 222–228.
    Robinson, C. J., Swift, S., Johnson, D. D., & Almeida, J. S. (2008). Prediction of pelvic organ prolapse using an artificial neural network. American Journal of Obstetrics and Gynecology, 199, 193.e1–193.e6.
    Sato, T., Bottlender, R., Schröter, A., & Möller, H.-J. (2004). Psychopathology of early-onset versus late-onset schizophrenia revisited: an observation of 473 neuroleptic-naive patients before and after first-admission treatments. Schizophrenia Research, 67, 175–183.
    Schaeffer, J. L., & Ross, R. G. (2002). Childhood-Onset Schizophrenia: Premorbid and Prodromal Diagnostic and Treatment Histories. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 538–545.
    Schendel, S. A. (1995). Anthropometry of the Head and Face. Plastic and Reconstructive Surgery, V96.
    Sikich, L., Frazier, J. A., McClellan, J., Findling, R. L., Vitiello, B., Ritz, L., M.B.A., et al. (2008). Double-Blind Comparison of First- and Second-Generation Antipsychotics in Early-Onset Schizophrenia and Schizo-affective Disorder: Findings From the Treatment of Early-Onset Schizophrenia Spectrum Disorders (TEOSS) Study. American Journal of Psychiatry, 165, 1420–1431.
    Slavkin, H. C. (1995). Molecular biology experimental strategies for craniofacial-oral-dental dysmorphology. Connective tissue research, 32, 233–239.
    Sommer, I. E. C., Ramsey, N. F., Mandl, R. C. W., Van Oel, C. J., & Kahn, R. S. (2004). Language activation in monozygotic twins discordant for schizophrenia. The British Journal of Psychiatry, 184, 128–135.
    Stefan T, S., & Valentin H, A. (2014). Minor Physical Anomalies in Schizophrenic Patients and Normal Controls. Psychiatry, 66, 222–233.
    Suvisaari, J. M., Haukka, J., Tanskanen, A., & nnqvist, J. K. L. (1998). Age at onset and outcome in schizophrenia are related to the degree of familial loading. The British Journal of Psychiatry, 173, 494–500.
    Tarrant, C. J., & Jones, P. B. (1999). Precursors to schizophrenia: Do biological markers have specificity? The Canadian Journal of Psychiatry, 44, 335–349.
    Thompson, P. M., Vidal, C., & Giedd, J. N. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences, 98, 11650–11655.
    Tikka, S. K., Nizamie, S. H., Das, B., Katshu, M. Z. U. H., & Goyal, N. (2013). Increased spontaneous gamma power and synchrony in schizophrenia patients having higher minor physical anomalies. Psychiatry Research, 207, 164–172.
    Wang Y., Fan Y., Bhatt P., & Davatzikos C. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Neuroimage, 50, 1519–1535.
    Xu, T., Chan, R. C. K., & Compton, M. T. (2011). Minor Physical Anomalies in Patients with Schizophrenia, Unaffected First-Degree Relatives, and Healthy Controls: A Meta-Analysis. PLoS ONE, 6, e24129.

    無法下載圖示 校內:2020-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE