簡易檢索 / 詳目顯示

研究生: 李道明
Lee, Dao-Ming
論文名稱: 棒球飛行軌跡之電腦模擬
Computer Simulation of Baseball Flight Trajectories
指導教授: 鄭匡佑
Cheng, Kuangyou B.
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 42
中文關鍵詞: 棒球打擊訓練虛擬實境橫向力係數流體力學空氣動力學
外文關鍵詞: baseball batting training, virtual reality, side force coefficient, fluid mechanics, aerodynamics
相關次數: 點閱:199下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緒論:棒球打擊被視為是運動中最困難的運動技巧之一,必須要透過大量打擊訓練才能有效提升打擊能力。但現階段缺乏較好的打擊訓練方法,能幫助打者模擬比賽真實情況的球路。因此本研究希望透過空氣動力學計算棒球飛行過程中所受的各種力,模擬與真實情況相吻合的飛行軌跡。方法:本研究經電腦數值運算模擬的棒球軌跡,與下列兩者比較進行驗證。(1)實體實驗:以棒球發球機將球發出,並透過高速攝影機捕捉球上的反光貼紙位置,進而計算球飛行的運動學參數 (2)其他研究團隊(Nathan等人)之軌跡模型。並透過最佳化的方式,求取飛行過程中最佳的CD (阻力係數)與CY (橫向力係數)。結果:實體實驗因器材限制而導致X方向的分量偏移過大,以致無法參與比對,因此僅以方法2進行最佳化及軌跡比對。在假設CD為常數的情況下,最佳CY (0.00339)與速率、速度平方以及雷諾數成高度負相關 (相關係數R分別為-0.825,-0.823,與-0.825);而在假設CY為常數的情況下,最佳CD (0.27700)與速率及速度平方亦呈負相關 (R分別為-0.474與-0.475)。若同時計算最佳CY與CD值,則得最佳CY=0.00254、CD=0.27603。軌跡比對部分,則以模擬過程中有加入最佳CD時的位置誤差最小,其X、Z與總偏移量的誤差皆明顯下降 (誤差分別為0.031m,-0.033m,0.102m),至於該軌跡中EVf的誤差 (1.38%)是否會造成打者打擊判斷上的影響,則有待探討。結論:最佳CY與速率以及雷諾數在本實驗中呈高度負相關,需透過更大範圍的球速測試,才能確認其於各範圍球速下之間的相關性。而由於CY值很小,對於模擬軌跡影響有限,因此於忽略橫向力的情況下,透過加入會隨雷諾數變化的CD值,應可模擬出貼近真實飛行情況的軌跡。

    This study simulated baseball flight trajectories by considering all the forces applied to the ball, including the gravitational force and aerodynamic forces. Calculation of the lift coefficient was based on previous studies, while the drag coefficient CD and side force coefficient CY were obtained by applying optimization methods. Simulated flight trajectories were verified by (1) Using high-speed cameras to record the trajectories of markers on a baseball for calculating the kinematic parameters of ball flight, and (2) Inputting the initial conditions to the Trajectory Calculator (TC) developed by another research group to obtain the data of trajectories. Moreover, when the CY and CD were not assumed to be constant, their optimal values were calculated by minimizing the overall difference in trajectory between the present simulation and TC. When the CD was assumed to be constant, the optimal CY was found to highly correlate with ball speed V, V2 and the Reynolds number Re. Optimal CD was moderately correlated with V and V2 when the side force was ignored. On the other hand, dispensing with the assumption of constant CY and CD allowed their optimal values to be calculated as 0.00254 and 0.27603, respectively. When employing optimal CD in the simulation, the deviation in the trajectory was the smallest and ΔX, ΔZ, ΔR were considerably reduced. To sum up, the small value of CY implies diminutive influence on trajectories and therefore realistic trajectories might be simulated by solely using suitable CD values. However, it still requires further research to investigate the effect of the deviation of EVf on batters’ reactions.

    摘要 i 致謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 名詞解釋 4 第貳章 文獻探討 5 第一節 棒球飛行的空氣動力學 5 第二節 阻力 5 第三節 升力 7 第四節 其他作用力 9 第五節 總結 9 第參章 研究方法 11 第一節 儀器設備 11 第二節 實驗設置 12 第三節 Trajectory Calculator 17 第四節 電腦模擬 19 第五節 實驗流程 20 第六節 資料處理與分析 21 第肆章 研究結果 25 第一節 電腦模擬與Trajectory Calculator 26 第二節 最佳CY與CD 26 第三節 位移變化量 30 第四節 末速誤差率與飛行時間差 31 第伍章 討論 33 第一節 實體實驗 33 第二節 原模擬軌跡差異比較 33 第三節 CY與CD對飛行軌跡之影響 34 第陸章 結論與建議 37 參考文獻 38

    Achenbach, E. (1974). The effects of surface roughness and tunnel blockage on the flow past spheres. Journal of Fluid Mechanics, 65(01), 113. https://doi.org/10.1017/S0022112074001285
    Alam, F., Ho, H., Chowdhury, H., & Subic, A. (2011). Aerodynamics of baseball. Procedia Engineering, 13, 207–212. https://doi.org/10.1016/j.proeng.2011.05.074
    Alam, F., Ho, H., Smith, L., Subic, A., Chowdhury, H., & Kumar, A. (2012). A study of baseball and softball aerodynamics. Procedia Engineering, 34, 86–91. https://doi.org/10.1016/j.proeng.2012.04.016
    Alaways, Leroy W., & Hubbard, M. (2001). Experimental determination of baseball spin and lift. Journal of Sports Sciences, 19(5), 349–358. https://doi.org/10.1080/02640410152006126
    Alaways, LeRoy W., Mish, S. P., & Hubbard, M. (2001). Identification of Release Conditions and Aerodynamic Forces in Pitched-Baseball Trajectories. Journal of Applied Biomechanics, 17(1), 63–76. https://doi.org/10.1123/jab.17.1.63
    Anderson Jr, J. D. (2010). Fundamentals of aerodynamics. Tata McGraw-Hill Education.
    Andrews, J. R., & Fleisig, G. S. (1998). Preventing Throwing Injuries. Journal of Orthopaedic & Sports Physical Therapy, 27(3), 187–188. https://doi.org/10.2519/jospt.1998.27.3.187
    Bahill, A. T., Baldwin, D. G., & Ramberg, J. S. (2009). Effects of Altitude and Atmospheric Conditions on the Flight of a Baseball. 20.
    Bearman, P. W., & Harvey, J. K. (1976). Golf Ball Aerodynamics. The Aeronautical Quarterly, 27(2), 112–122. https://doi.org/10.1017/S0001925900007617
    Briggs, L. J. (1959). Effect of Spin and Speed on the Lateral Deflection (Curve) of a Baseball; and the Magnus Effect for Smooth Spheres. American Journal of Physics, 27(8), 589–596. https://doi.org/10.1119/1.1934921
    Cork, A., Justham, L., & West, A. A. (2010). Batter’s behaviour during training when facing a bowling machine and when facing a bowler. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 224(3), 201–208. https://doi.org/10.1243/17543371JSET70
    Cross, R. (2011). Physics of baseball & softball. Springer.
    Escamilla, R. F., Fleisig, G. S., DeRenne, C., Taylor, M. K., Moorman, C. T., Imamura, R., Barakatt, E., & Andrews, J. R. (2009). A Comparison of Age Level on Baseball Hitting Kinematics. Journal of Applied Biomechanics, 25(3), 210–218. https://doi.org/10.1123/jab.25.3.210
    Frohlich, C. (1984). Aerodynamic drag crisis and its possible effect on the flight of baseballs. American Journal of Physics, 52(4), 325–334. https://doi.org/10.1119/1.13883
    Gray, R. (2017). Transfer of Training from Virtual to Real Baseball Batting. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02183
    Isogawa, M., Mikami, D., Fukuda, T., Saijo, N., Takahashi, K., Kimata, H., & Kashino, M. (2018). What Can VR Systems Tell Sports Players? Reaction-Based Analysis of Baseball Batters in Virtual and Real Worlds. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 587–588. https://doi.org/10.1109/VR.2018.8446073
    Jinji, T., & Sakurai, S. (2006). Baseball: Direction of spin axis and spin rate of the pitched baseball. Sports Biomechanics, 5(2), 197–214. https://doi.org/10.1080/14763140608522874
    Jinji, T., Sakurai, S., & Hirano, Y. (2011). Factors determining the spin axis of a pitched fastball in baseball. Journal of Sports Sciences, 29(7), 761–767. https://doi.org/10.1080/02640414.2011.553963
    Kagan, D., & Nathan, A. M. (2017). Statcast and the Baseball Trajectory Calculator. The Physics Teacher, 55(3), 134–136. https://doi.org/10.1119/1.4976652
    Kensrud, J. R., Smith, L. V., Nathan, A., & Nevins, D. (2015). Relating Baseball Seam Height to Carry Distance. Procedia Engineering, 112, 406–411. https://doi.org/10.1016/j.proeng.2015.07.216
    Kuo, S.-Y., Cheng, K. B., Chiu, H.-T., & Huang, Y.-C. (2013). Differences in Baseball Batting Movement Strategies between Facing a Pitcher and Pitching Machine.
    Maccoll, J. W. (1928). Aerodynamics of a Spinning Sphere. The Aeronautical Journal, 32(213), 777–798. https://doi.org/10.1017/S0368393100136260
    Mihoces, G. (2003, March 3). 10 hardest things to do in sports. USA Today, 3C.
    Nagami, T., Higuchi, T., Nakata, H., Yanai, T., & Kanosue, K. (2016). Relation between Lift Force and Ball Spin for Different Baseball Pitches. Journal of Applied Biomechanics, 32(2), 196–204. https://doi.org/10.1123/jab.2015-0068
    Nagami, T., Morohoshi, J., Higuchi, T., Nakata, H., Naito, S., & Kanosue, K. (2011). Spin on Fastballs Thrown by Elite Baseball Pitchers: Medicine & Science in Sports & Exercise, 43(12), 2321–2327. https://doi.org/10.1249/MSS.0b013e318220e728
    Nathan, A. M. (2008). The effect of spin on the flight of a baseball. Am. J. Phys., 76(2), 7.
    Nathan, A. M. (2012). What New Technologies Are Teaching Us About the Game of Baseball.
    Race, D. E. (1961). A Cinematographic and Mechanical Analysis of the External Movements Involved in Hitting a Baseball Effectively. Research Quarterly. American Association for Health, Physical Education and Recreation, 32(3), 394–404. https://doi.org/10.1080/10671188.1961.10613161
    Rubinow, S. I., & Keller, J. B. (1961). The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 11(03), 447. https://doi.org/10.1017/S0022112061000640
    Sawicki, G. S., Hubbard, M., & Stronge, W. J. (2003). How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories. American Journal of Physics, 71(11), 1152–1162. https://doi.org/10.1119/1.1604384
    Selin, C. (1959). An Analysis of the Aerodynamics of Pitched Baseballs. Research Quarterly. American Association for Health, Physical Education and Recreation, 30(2), 232–240. https://doi.org/10.1080/10671188.1959.10613029
    Watts, R. G., & Ferrer, R. (1987). The lateral force on a spinning sphere: Aerodynamics of a curveball. American Journal of Physics, 55(1), 40–44. https://doi.org/10.1119/1.14969
    Watts, R. G., & Sawyer, E. (1975). Aerodynamics of a knuckleball. American Journal of Physics, 43(11), 960–963. https://doi.org/10.1119/1.10020

    下載圖示 校內:2022-08-31公開
    校外:2022-08-31公開
    QR CODE