簡易檢索 / 詳目顯示

研究生: 呂琹晴
Lu, Chin-Ching
論文名稱: 以替代毒理模式探討食品奈米物質對內分泌干擾及生殖毒性的潛在影響
Study of potential endocrine disruption and reproductive toxicity of food nanoparticles using alternative test methods
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 93
中文關鍵詞: 食品奈米內分泌干擾生殖毒性替代毒理試驗粒線體自噬Toxpi
外文關鍵詞: Food nanoparticles, Endocrine disruption, Reproductive toxicity, Alternative test methods, Mitophagy, Toxpi
相關次數: 點閱:51下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近幾年來奈米科技的發展,奈米技術也被應用在食品產業上,主要目的為幫助食品製備、保存及加工,可用於提升食品品質。但由於奈米特殊的物化特性,與其他化學物質相比在生物體中有不同的影響機制與毒理機轉,目前已有許多研究指出奈米物質對於內分泌/生殖毒性的影響,並且奈米所引發的毒性機轉經常和粒線體損傷相關。細胞自噬為細胞中一種保守的降解途徑,可幫助細胞清除錯誤折疊的蛋白或受損的細胞胞器,將這些物質回收再利用,而粒線體自噬則是一種針對粒線體的細胞自噬作用,一般情況下粒線體分裂,可透過自噬清除不健康部分維持正常粒線體功能,但當超過可承受閾值時,過度的粒線體分裂可能會誘導細胞走向死亡。本研究主要目的為使用替代毒理模式實驗探討暴露食品中奈米造成的內分泌干擾/生殖毒性影響,並討論其可能影響機制。選擇食品中常見的奈米作為實驗的暴露物質,包括兩種奈米銀、兩種奈米氧化鋅及奈米二氧化鈦,並且依據OECD所制定篩選內分泌干擾物的測試準則進行實驗,在體外細胞實驗階層根據OECD455和OECD456進行。在OECD TG455探討對雌激素受器的促進與拮抗影響,在OECD TG456則探討雄性激素與雌性激素分泌影響。建立OECD驗證的替代測試方法,確認五種奈米對內分泌干擾的影響後,接著會以高通量螢光分析、流式細胞儀以及西方墨點法等探討MLTC-1細胞中奈米誘導生殖毒性的機制,包括粒線體損傷、粒線體分裂及粒線體相關死亡路徑的檢測,主要討論細胞自噬、粒線體自噬和細胞凋亡三種路徑之關係,也會以抑制劑反向驗證各個死亡路徑的影響作用。此外,粒線體損傷部分除了以高通量分析篩選對粒線體膜電位(MMP)損傷及誘導ROS生成影響,也會以穿透式電子顯微鏡(TEM)觀察確認粒線體實際損傷情況。最後,本研究會針對五種奈米物質,以毒理優先指數工具ToxPi (Toxicological Priority Index)進行數據整合及視覺化,排序五種奈米的毒性。
      內分泌干擾試驗,於OECD455及456分別使用Hela-9903和H295R細胞進行MTT assay,選擇80%以上細胞存活率的奈米濃度進行內分泌干擾試驗,避免細胞毒性影響試驗結果。目前在OECD455中得知,五種奈米中NH2-ZnO NPs為較強的ER (estrogen receptor)促進劑,而TiO2 NPs則較明顯是作為ER拮抗劑;OECD456結果顯示五種奈米皆顯著的促進雌激素(E2)的生成,對於睪固酮(Testosterone)則是有些微抑制的情形。生殖毒性機制探討使用小鼠睪丸間質細胞MLTC-1細胞,首先以JC-1和MitoSOX™ Red染劑進行高通量螢光篩選,確認奈米暴露處理對粒線體的損傷影響,包括粒線體膜電位及超氧化物生成,結果以兩種奈米氧化鋅和二氧化鈦影響較為顯著。選擇三種影響顯著的奈米進一步探討粒線體介導的相關死亡機制路徑,高通量分析方法以Caspase-3/7 Green、Cyto-ID Green及Mtphagy red篩選奈米對細胞凋亡、細胞自噬以及粒線體自噬路徑影響,另外也以流式細胞儀及西方墨點法確認這些死亡路徑相關的蛋白表現。奈米氧化鋅及奈米二氧化鈦皆有促進細胞凋亡及細胞自噬情形,粒線體自噬則是在兩種奈米氧化鋅處理的組別有較明顯上調情形,對於細胞凋亡性壞死路徑三種奈米則皆無顯著影響。以各路徑的抑制劑反向驗證結果初步顯示,奈米氧化鋅造成生殖毒性機制確實包括誘導細胞自噬、粒線體自噬及細胞凋亡三種路徑,於TEM觀察結果也顯示出有明顯粒線體損傷、分裂及自噬情形。推測奈米氧化鋅可能藉由粒線體損傷引起粒線體分裂及粒線體自噬作用進而誘導細胞凋亡路徑,造成生殖毒性;奈米二氧化鈦則可能透過細胞自噬失調及細胞凋亡路徑造成生殖毒性。最後,以毒理優先指數工具Toxpi整合及分析以上內分泌干擾及生殖毒性機制探討的結果,得到奈米毒性排序為COOH-ZnO NPs> NH2-ZnO NPs> TiO2 NPs。

    In this study, we used alternative test methods validated by OECD and MLTC-1 cell to investigate the endocrine disruption and reproductive toxicity induced by nanoparticles often used in food industry. The five different nanoparticles include NH2-ZnO NPs, COOH-ZnO NPs, prism-AgNPs, spherical-AgNPs and COOH-TiO2 NPs. According to OECD455, Hela9903 cell line is used to determine the transfected activity of estrogen receptors. The results of OECD 455 showed that NH2-ZnO NPs was the strongest ER (estrogen receptor) agonist among five nanoparticles, while TiO2 NPs was ER antagonist. According to OECD456, H295R cell line is used to analyze the hormone production after treated nanoparticles. The results of OECD 456 showed that five nanoparticles induced the production of 17β-estradiol (E2), and slightly inhibited the production of testosterone (T). In addition to establishment alternative test models validated by the OECD, the reproductive toxicity mechanism related to mitochondrial dysfunction will be analyzed in MLTC-1 cell. The test methods used include high throuput screening, flow cytometry, immunofluorecent staining and western blot. Exposure to ZnO NPs destroyed the mitochondrial function of cells, thereby causing cytotoxicity and inducing cell autophagy, mitophagy and apoptosis. ZnO NPs cause Drp1-mediated mitochondrial division, which may play an important role in mitochondrial mediated apoptosis. TiO2 NPs could enter MLTC-1 cells and mostly distributed in the lysosomes, thereby may cause autophagy dysfunction and induce cell apoptosis. AgNPs did not induce mitochondria damage and apoptosis significantly in MLTC-1 cell, but may induce autophagy pathway. Finally, Toxpi was used to integrate and visualize the data of endocrine disruption and reproductive toxicity caused by nanoparticles discussed above, and the toxicity ranking was COOH-ZnO NPs> NH2-ZnO NPs> TiO2 NPs. In this study, the reslts indicated that ZnO NPs and TiO2 NPs are two NPs that need to be monitored for their potential toxicity effect in reproductive systems.

    中文摘要 I 致謝 VII 目錄 VIII 第一章、序論 1 第二章、文獻回顧 2 第一節、奈米 2 1.奈米材料 2 2.食品奈米 2 3.奈米毒性 3 第二節、內分泌干擾/生殖毒性 4 1.內分泌干擾物 4 2.生殖毒性 4 3.奈米對內分泌干擾/生殖毒性影響 5 4.內分泌干擾/生殖毒性機制 6 5.歐洲經濟合作暨發展組織(OECD)對內分泌干擾物測試之建議 8 6.Toxpi (Toxicological Priority Index)的應用 9 第三節、粒線體扮演角色 10 1.粒線體功能 10 2.粒線體動力學,分裂與融合 10 3.粒線體功能損傷(Mitochondrial dysfunction) 11 4.粒線體分裂抑制劑-Mdivi-1 12 第四節、程序性細胞死亡機制(Programed cell death) 12 1.細胞自噬 (Autophagy) 13 2.粒線體自噬 (Mitophagy) 14 3.細胞凋亡(Apoptosis) 16 4.細胞壞死性凋亡 (Necroptosis) 17 5.奈米造成毒性的相關死亡機制 18 第三章、研究目的 20 第四章、研究架構 21 第五章、研究材料與方法 22 第一節、研究材料 22 1.細胞株 22 2.奈米 22 3.儀器 23 4.試劑與耗材 24 5.溶液 26 第二節、研究方法與實驗步驟 27 1.奈米物化特性分析 27 2.細胞培養 27 3.凍細胞與解凍細胞 28 4.存活率測定(MTT assay) 29 5.OECD 替代毒理實驗方法 29 6.高通量螢光分析 (High throughput screening) 32 7.流式細胞儀 (Flow cytometry) 32 8.西方免疫墨點法 (Western blot) 32 9.穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 33 10.抑制劑驗證機轉之檢測 34 11.Toxpi (Toxicological Priority Index) 34 12.資料分析與統計 34 第六章、實驗結果 35 第一節、奈米物化特性測定 35 第二節、以OECD替代毒理模式評估食品奈米的內分泌干擾影響 35 1.進行OECD內分泌干擾實驗前奈米測試劑量選擇之初步測試(Range finder) 36 2.以OECD 455評估五種奈米對雌激素受器轉錄活性的促進與拮抗影響 36 3.以OECD 456評估五種奈米對於生殖激素睪固酮及雌激素的分泌影響 37 第三節、以細胞模式探討食品奈米暴露的生殖毒性機制路徑 38 1.五種奈米對MLTC-1細胞株的細胞毒性影響(細胞存活率) 38 2.MLTC-1暴露奈米後所誘導的粒線體損傷 38 3.不同奈米誘導細胞死亡機轉之差異 39 4.以TEM觀察奈米氧化鋅及奈米二氧化鈦誘導的粒線體損傷情形 43 5.抑制劑對暴露奈米後細胞存活率降低的逆轉影響 44 第四節、Toxpi對食品奈米毒性之排序整合 45 第七章、討論 46 第八章、結論與建議 55 第九章、參考文獻 57 圖表 70 Figure 1. Characterization of nanoparticles 71 Figure 2. OECD455 Hela-9903 cell line MTT assay 71 Figure 3. OECD456 H295R cell line MTT assay 72 Figure 4. OECD455 - Luciferase test 73 Figure 5. OECD456 –Hormone production (T and E2) 74 Figure 6. Cytotoxicity in MLTC-1 cell induced by nanoparticles 75 Figure 7. Mitochondrial dysfunction induced by nanoparticles in MLTC-1 cells-HTS JC-1 assay (Membrane potential) 76 Figure 8. Mitochondrial dysfunction induced by nanoparticles in MLTC-1 cells-HTS MitoSOX Red assay (ROS production) 78 Figure 9. Nanoparticles induced apoptosis in MLTC-1 cell after 24 hr. treated. 81 Figure 10. Nanoparticles induced necroptosis in MLTC-1 cell after 24 hr. treated. 82 Figure 11. Nanoparticles induced autophagy in MLTC-1 cell after 24 hr. 86 Figure 12. Nanoparticles induced mitophagy in MLTC-1 cell after 24 hr. treated. 89 Figure 13. The morphology of mitochondria in MLTC-1 cells after treated with nanoparticle for 24 hr. 91 Figure 14. Inhibitory effect of different inhibitor on the decrease of MLTC-1 cells viability. 92 Figure 15. Toxicity ranking of three nanoparticles by Toxpi 93

    Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., . . . Samiei, M. (2016). Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol, 42(2), 173-180. doi:10.3109/1040841x.2014.912200
    Alvarado González, A. PROGRAMMED CELL DEATH. REVIEW AND ITS IMPACT IN COVID-19. Clinical Research and Trials, 7(1). doi:10.15761/crt.1000330
    Amir, S., Shah, S. T., Mamoulakis, C., Docea, A. O., Kalantzi, O.-I., Zachariou, A., . . . Tsatsakis, A. (2021). Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. International Journal of Environmental Research and Public Health, 18(4). doi:10.3390/ijerph18041464
    Andreyev, A. Y., Kushnareva, Y. E., & Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc), 70(2), 200-214. doi:10.1007/s10541-005-0102-7
    Ankley, G. T., Bencic, D. C., Breen, M. S., Collette, T. W., Conolly, R. B., Denslow, N. D., . . . Watanabe, K. H. (2009). Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat Toxicol, 92(3), 168-178. doi:10.1016/j.aquatox.2009.01.013
    Araujo, L., Sheppard, M., Löbenberg, R., & Kreuter, J. (1999). Uptake of PMMA nanoparticles from the gastrointestinal tract after oral administration to rats: modification of the body distribution after suspension in surfactant solutions and in oil vehicles. International Journal of Pharmaceutics, 176(2), 209-224. Retrieved from https://www.sciencedirect.com/science/article/pii/S0378517398003147. doi:https://doi.org/10.1016/S0378-5173(98)00314-7
    Asare, N., Instanes, C., Sandberg, W. J., Refsnes, M., Schwarze, P., Kruszewski, M., & Brunborg, G. (2012). Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291(1-3), 65-72. doi:10.1016/j.tox.2011.10.022
    Ayobahan, S. U., Eilebrecht, S., Baumann, L., Teigeler, M., Hollert, H., Kalkhof, S., . . . Schäfers, C. (2020). Detection of biomarkers to differentiate endocrine disruption from hepatotoxicity in zebrafish (Danio rerio) using proteomics. Chemosphere, 240, 124970. Retrieved from https://www.sciencedirect.com/science/article/pii/S004565351932209X. doi:https://doi.org/10.1016/j.chemosphere.2019.124970
    Bai, C., & Tang, M. (2020). Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol, 40(1), 37-63. doi:10.1002/jat.3910
    Barkhordari, A., Hekmatimoghaddam, S., Jebali, A., Khalili, M. A., Talebi, A., & Noorani, M. (2013). Effect of zinc oxide nanoparticles on viability of human spermatozoa. Iran J Reprod Med, 11(9), 767-771.
    Berghe, T. V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., & Vandenabeele, P. (2014). Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 15(2), 135-147. Retrieved from https://doi.org/10.1038/nrm3737. doi:10.1038/nrm3737
    Bhatti, J. S., Bhatti, G. K., & Reddy, P. H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis, 1863(5), 1066-1077. doi:10.1016/j.bbadis.2016.11.010
    Braun, R. J. (2012). Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration. Front Oncol, 2, 182. doi:10.3389/fonc.2012.00182
    Bravo-San Pedro, J. M., Kroemer, G., & Galluzzi, L. (2017). Autophagy and Mitophagy in Cardiovascular Disease. Circ Res, 120(11), 1812-1824. doi:10.1161/circresaha.117.311082
    Brohi, R. D., Wang, L., Talpur, H. S., Wu, D., Khan, F. A., Bhattarai, D., . . . Huo, L. J. (2017). Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review. Front Pharmacol, 8, 606. doi:10.3389/fphar.2017.00606
    Buchman, J. T., Hudson-Smith, N. V., Landy, K. M., & Haynes, C. L. (2019). Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc Chem Res, 52(6), 1632-1642. doi:10.1021/acs.accounts.9b00053
    Buck, Michael D., O’Sullivan, D., Klein Geltink, Ramon I., Curtis, Jonathan D., Chang, C.-H., Sanin, David E., . . . Pearce, Erika L. (2016). Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell, 166(1), 63-76. Retrieved from https://www.sciencedirect.com/science/article/pii/S0092867416305864. doi:https://doi.org/10.1016/j.cell.2016.05.035
    Cai, Z., Jitkaew, S., Zhao, J., Chiang, H.-C., Choksi, S., Liu, J., . . . Liu, Z.-G. (2014). Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology, 16(1), 55-65. Retrieved from https://doi.org/10.1038/ncb2883. doi:10.1038/ncb2883
    Campbell, K. J., & Tait, S. W. G. (2018). Targeting BCL-2 regulated apoptosis in cancer. Open Biol, 8(5). doi:10.1098/rsob.180002
    Chang, H., & Zou, Z. (2020). Targeting autophagy to overcome drug resistance: further developments. Journal of Hematology & Oncology, 13(1), 159. Retrieved from https://doi.org/10.1186/s13045-020-01000-2. doi:10.1186/s13045-020-01000-2
    Chen, L., Wu, H., Hong, W., Aguilar, Z. P., Fu, F., & Xu, H. (2021). The effect of reproductive toxicity induced by ZnO NPs in mice during early pregnancy through mitochondrial apoptotic pathway. Environ Toxicol, 36(6), 1143-1151. doi:10.1002/tox.23113
    Chen, R. J., Chen, Y. Y., Liao, M. Y., Lee, Y. H., Chen, Z. Y., Yan, S. J., . . . Wang, Y. J. (2020). The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies. Int J Mol Sci, 21(7). doi:10.3390/ijms21072387
    Chu, Q., Gu, X., Zheng, Q., Wang, J., & Zhu, H. (2021). Mitochondrial Mechanisms of Apoptosis and Necroptosis in Liver Diseases. Analytical Cellular Pathology, 2021, 8900122. Retrieved from https://doi.org/10.1155/2021/8900122. doi:10.1155/2021/8900122
    Colborn, T., vom Saal, F. S., & Soto, A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect, 101(5), 378-384. doi:10.1289/ehp.93101378
    Cribbs, J. T., & Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep, 8(10), 939-944. doi:10.1038/sj.embor.7401062
    De Coster, S., & van Larebeke, N. (2012). Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health, 2012, 713696. doi:10.1155/2012/713696
    De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine, 3(2), 133-149. doi:10.2147/ijn.s596
    DeRoo, E., Zhou, T., & Liu, B. (2020). The Role of RIPK1 and RIPK3 in Cardiovascular Disease. Int J Mol Sci, 21(21). doi:10.3390/ijms21218174
    Dhuriya, Y. K., & Sharma, D. (2018). Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation, 15(1), 199. Retrieved from https://doi.org/10.1186/s12974-018-1235-0. doi:10.1186/s12974-018-1235-0
    Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., . . . Gore, A. C. (2009). Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev, 30(4), 293-342. doi:10.1210/er.2009-0002
    Esteras, N., Adjobo-Hermans, M. J. W., Abramov, A. Y., & Koopman, W. J. H. (2020). Visualization of mitochondrial membrane potential in mammalian cells. Methods Cell Biol, 155, 221-245. doi:10.1016/bs.mcb.2019.10.003
    Feng, W., Wang, J., Yan, X., Zhang, Q., Chai, L., Wang, Q., . . . Li, M. (2021). ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif, 54(6), e13048. doi:10.1111/cpr.13048
    Filippi, C., Pryde, A., Cowan, P., Lee, T., Hayes, P., Donaldson, K., . . . Stone, V. (2015). Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: impact on metabolism and bioenergetics. Nanotoxicology, 9(1), 126-134. doi:10.3109/17435390.2014.895437
    Forni, M. F., Peloggia, J., Trudeau, K., Shirihai, O., & Kowaltowski, A. J. (2016). Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics. Stem Cells, 34(3), 743-755. doi:10.1002/stem.2248
    Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine, 7, 5577-5591. doi:10.2147/ijn.S36111
    Galanjuk, S., Zühr, E., Dönmez, A., Bartsch, D., Kurian, L., Tigges, J., & Fritsche, E. (2022). The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing. Int J Mol Sci, 23(6). doi:10.3390/ijms23063295
    Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R., & Kroemer, G. (2017). Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery, 16(7), 487-511. Retrieved from https://doi.org/10.1038/nrd.2017.22. doi:10.1038/nrd.2017.22
    Galluzzi, L., & Green, D. R. (2019). Autophagy-Independent Functions of the Autophagy Machinery. Cell, 177(7), 1682-1699. Retrieved from https://www.sciencedirect.com/science/article/pii/S0092867419305549. doi:https://doi.org/10.1016/j.cell.2019.05.026
    Gangwal, S., Reif, D. M., Mosher, S., Egeghy, P. P., Wambaugh, J. F., Judson, R. S., & Hubal, E. A. C. (2012). Incorporating exposure information into the toxicological prioritization index decision support framework. Science of The Total Environment, 435-436, 316-325. Retrieved from https://www.sciencedirect.com/science/article/pii/S0048969712009199. doi:https://doi.org/10.1016/j.scitotenv.2012.06.086
    Gao, Y., Wu, W., Qiao, K., Feng, J., Zhu, L., & Zhu, X. (2021). Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes. Water Res, 204, 117603. doi:10.1016/j.watres.2021.117603
    Garces, M., Cáceres, L., Chiappetta, D., Magnani, N., & Evelson, P. (2021). Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New Journal of Chemistry, 45. doi:10.1039/D1NJ01415C
    Gerencser, A. A., Chinopoulos, C., Birket, M. J., Jastroch, M., Vitelli, C., Nicholls, D. G., & Brand, M. D. (2012). Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol, 590(12), 2845-2871. doi:10.1113/jphysiol.2012.228387
    Gkikas, I., Palikaras, K., & Tavernarakis, N. (2018). The Role of Mitophagy in Innate Immunity. Front Immunol, 9, 1283. doi:10.3389/fimmu.2018.01283
    Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol, 221(1), 3-12. doi:10.1002/path.2697
    Grandjean, P., Abdennebi-Najar, L., Barouki, R., Cranor, C. F., Etzel, R. A., Gee, D., . . . Weihe, P. (2019). Timescales of developmental toxicity impacting on research and needs for intervention. Basic Clin Pharmacol Toxicol, 125 Suppl 3(Suppl 3), 70-80. doi:10.1111/bcpt.13162
    Green, D. R., & Llambi, F. (2015). Cell Death Signaling. Cold Spring Harb Perspect Biol, 7(12). doi:10.1101/cshperspect.a006080
    Green, K., Brand, M. D., & Murphy, M. P. (2004). Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes, 53 Suppl 1, S110-118. doi:10.2337/diabetes.53.2007.s110
    Gromadzka-Ostrowska, J., Dziendzikowska, K., Lankoff, A., Dobrzyńska, M., Instanes, C., Brunborg, G., . . . Kruszewski, M. (2012). Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett, 214(3), 251-258. doi:10.1016/j.toxlet.2012.08.028
    Grys, D.-B., de Nijs, B., Salmon, A. R., Huang, J., Wang, W., Chen, W.-H., . . . Baumberg, J. J. (2020). Citrate Coordination and Bridging of Gold Nanoparticles: The Role of Gold Adatoms in AuNP Aging. ACS Nano, 14(7), 8689-8696. Retrieved from https://doi.org/10.1021/acsnano.0c03050. doi:10.1021/acsnano.0c03050
    Guideline, P.-B. T. (2001). OECD guideline for the testing of chemicals. The Hershberger, 601, 858.
    Hamacher-Brady, A., & Brady, N. R. (2016). Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci, 73(4), 775-795. doi:10.1007/s00018-015-2087-8
    Hasnat, M., Yuan, Z., Ullah, A., Naveed, M., Raza, F., Baig, M., . . . Jiang, Z. (2020). Mitochondria-dependent apoptosis in triptolide-induced hepatotoxicity is associated with the Drp1 activation. Toxicol Mech Methods, 30(2), 124-133. doi:10.1080/15376516.2019.1669247
    Hass, U. (2004). OECD conceptual framework for testing and assessment of endocrine disrupters as a basis for regulation of substances with endocrine disrupting properties: Nordic Council of Ministers.
    Heo, J. M., & Rutter, J. (2011). Ubiquitin-dependent mitochondrial protein degradation. Int J Biochem Cell Biol, 43(10), 1422-1426. doi:10.1016/j.biocel.2011.06.002
    Hong, F., Zhao, X., Chen, M., Zhou, Y., Ze, Y., Wang, L., . . . Ye, L. (2016). TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. J Biomed Mater Res A, 104(1), 124-135. doi:10.1002/jbm.a.35548
    Hsiao, I. L., Hsieh, Y.-K., Wang, C.-F., Chen, I. C., & Huang, Y.-J. (2015). Trojan-Horse Mechanism in the Cellular Uptake of Silver Nanoparticles Verified by Direct Intra- and Extracellular Silver Speciation Analysis. Environ Sci Technol, 49(6), 3813-3821. Retrieved from https://doi.org/10.1021/es504705p. doi:10.1021/es504705p
    Jeng, P. S., Inoue-Yamauchi, A., Hsieh, J. J., & Cheng, E. H. (2018). BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. Curr Opin Physiol, 3, 71-81. doi:10.1016/j.cophys.2018.03.005
    Joseph, E., & Singhvi, G. (2019). Chapter 4 - Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. In A. M. Grumezescu (Ed.), Nanomaterials for Drug Delivery and Therapy (pp. 91-116): William Andrew Publishing.
    Kane, L. A., Lazarou, M., Fogel, A. I., Li, Y., Yamano, K., Sarraf, S. A., . . . Youle, R. J. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205(2), 143-153. doi:10.1083/jcb.201402104
    Khacho, M., Clark, A., Svoboda, D. S., Azzi, J., MacLaurin, J. G., Meghaizel, C., . . . Slack, R. S. (2016). Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program. Cell Stem Cell, 19(2), 232-247. doi:10.1016/j.stem.2016.04.015
    Kielbik, P., Kaszewski, J., Dabrowski, S., Faundez, R., Witkowski, B. S., Wachnicki, L., . . . Godlewski, M. M. (2019). Transfer of orally administered ZnO:Eu nanoparticles through the blood-testis barrier: the effect on kinetic sperm parameters and apoptosis in mice testes. Nanotechnology, 30(45), 455101. doi:10.1088/1361-6528/ab36f4
    Kim, J. A., Wei, Y., & Sowers, J. R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circ Res, 102(4), 401-414. doi:10.1161/circresaha.107.165472
    Klose, J., Pahl, M., Bartmann, K., Bendt, F., Blum, J., Dolde, X., . . . Fritsche, E. (2021). Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery. Cell Biol Toxicol. doi:10.1007/s10565-021-09603-2
    Kotil, T., Akbulut, C., & Yön, N. D. (2017). The effects of titanium dioxide nanoparticles on ultrastructure of zebrafish testis (Danio rerio). Micron, 100, 38-44. doi:10.1016/j.micron.2017.04.006
    Kula, K., Walczak-Jedrzejowska, R., Słowikowska-Hilczer, J., & Oszukowska, E. (2001). Estradiol enhances the stimulatory effect of FSH on testicular maturation and contributes to precocious initiation of spermatogenesis. Mol Cell Endocrinol, 178(1-2), 89-97. doi:10.1016/s0303-7207(01)00415-4
    Lavie, J., De Belvalet, H., Sonon, S., Ion, A. M., Dumon, E., Melser, S., . . . Bénard, G. (2018). Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism. Cell Rep, 23(10), 2852-2863. doi:10.1016/j.celrep.2018.05.013
    Li, J., Chang, X., Shang, M., Niu, S., Zhang, W., Zhang, B., . . . Xue, Y. (2021). Mitophagy-lysosomal pathway is involved in silver nanoparticle-induced apoptosis in A549 cells. Ecotoxicol Environ Saf, 208, 111463. doi:10.1016/j.ecoenv.2020.111463
    Li, S., Zhang, J., Liu, C., Wang, Q., Yan, J., Hui, L., . . . Zhang, M. (2021). The Role of Mitophagy in Regulating Cell Death. Oxidative Medicine and Cellular Longevity, 2021, 6617256. Retrieved from https://doi.org/10.1155/2021/6617256. doi:10.1155/2021/6617256
    Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787-795. doi:10.1038/nature05292
    Liu, L., Lu, W., Dong, J., Wu, Y., Tang, M., Liang, G., & Kong, L. (2022). Study of the mechanism of mitochondrial division and mitochondrial autophagy in the male reproductive toxicity induced by nickel nanoparticles. Nanoscale, 14(5), 1868-1884. doi:10.1039/d1nr05407d
    Liu, L., Sakakibara, K., Chen, Q., & Okamoto, K. (2014). Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res, 24(7), 787-795. doi:10.1038/cr.2014.75
    Liu, Q., Xu, C., Ji, G., Liu, H., Mo, Y., Tollerud, D. J., . . . Zhang, Q. (2016). Sublethal effects of zinc oxide nanoparticles on male reproductive cells. Toxicol In Vitro, 35, 131-138. doi:10.1016/j.tiv.2016.05.017
    Liu, Z., Zhuan, Q., Zhang, L., Meng, L., Fu, X., & Hou, Y. (2022). Polystyrene microplastics induced female reproductive toxicity in mice. J Hazard Mater, 424(Pt C), 127629. doi:10.1016/j.jhazmat.2021.127629
    Lőrincz, P., & Juhász, G. (2020). Autophagosome-Lysosome Fusion. J Mol Biol, 432(8), 2462-2482. doi:10.1016/j.jmb.2019.10.028
    Ma, Y. B., Lu, C. J., Junaid, M., Jia, P. P., Yang, L., Zhang, J. H., & Pei, D. S. (2018). Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish. Chemosphere, 207, 320-328. doi:10.1016/j.chemosphere.2018.05.019
    MacVicar, T., & Langer, T. (2016). OPA1 processing in cell death and disease - the long and short of it. J Cell Sci, 129(12), 2297-2306. doi:10.1242/jcs.159186
    Manczak, M., Kandimalla, R., Yin, X., & Reddy, P. H. (2019). Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet, 28(2), 177-199. doi:10.1093/hmg/ddy335
    Mathias, F. T., Romano, R. M., Kizys, M. M., Kasamatsu, T., Giannocco, G., Chiamolera, M. I., . . . Romano, M. A. (2015). Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology, 9(1), 64-70. doi:10.3109/17435390.2014.889237
    Mishra, P., & Chan, D. C. (2016). Metabolic regulation of mitochondrial dynamics. J Cell Biol, 212(4), 379-387. doi:10.1083/jcb.201511036
    Morgan, A. M., Ibrahim, M. A., & Noshy, P. A. (2017). Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochem Biophys Res Commun, 486(2), 595-600. doi:10.1016/j.bbrc.2017.03.098
    Morishita, Y., Yoshioka, Y., Satoh, H., Nojiri, N., Nagano, K., Abe, Y., . . . Tsutsumi, Y. (2012). Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochemical and Biophysical Research Communications, 420(2), 297-301. Retrieved from https://www.sciencedirect.com/science/article/pii/S0006291X12004123. doi:https://doi.org/10.1016/j.bbrc.2012.02.153
    Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934. doi:10.1039/c8nr02278j
    Mozaffari, Z., Parivar, K., Roodbari, N. H., & Irani, S. (2015). Histopathological Evaluation of the Toxic Effects of Zinc Oxide (ZnO) Nanoparticles on Testicular Tissue of NMRI Adult Mice. Advanced Studies in Biology, 7, 275-291.
    Muncke, J., Andersson, A. M., Backhaus, T., Boucher, J. M., Carney Almroth, B., Castillo Castillo, A., . . . Scheringer, M. (2020). Impacts of food contact chemicals on human health: a consensus statement. Environ Health, 19(1), 25. doi:10.1186/s12940-020-0572-5
    Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochem J, 417(1), 1-13. doi:10.1042/bj20081386
    Naseer, B., Srivastava, G., Qadri, O. S., Faridi, S. A., Islam, R. U., & Younis, K. (2018). Importance and health hazards of nanoparticles used in the food industry. Nanotechnology Reviews, 7(6), 623-641. Retrieved from <Go to ISI>://WOS:000451476100012. doi:10.1515/ntrev-2018-0076
    Ni, H.-M., Williams, J. A., & Ding, W.-X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biology, 4, 6-13. Retrieved from https://www.sciencedirect.com/science/article/pii/S2213231714001189. doi:https://doi.org/10.1016/j.redox.2014.11.006
    Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113(7), 823-839. doi:10.1289/ehp.7339
    Oberdorster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2-25. Retrieved from <Go to ISI>://WOS:000260264200002. doi:10.1080/17435390701314761
    Palikaras, K., & Tavernarakis, N. (2012). Mitophagy in neurodegeneration and aging. Frontiers in Genetics, 3. Retrieved from https://www.frontiersin.org/articles/10.3389/fgene.2012.00297. doi:10.3389/fgene.2012.00297
    Pappus, S. A., & Mishra, M. (2018). A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes. Adv Exp Med Biol, 1048, 311-322. doi:10.1007/978-3-319-72041-8_18
    Park, Y., & Lee, H. S. (2021). Cyclic depsipeptide mycotoxin exposure may cause human endocrine disruption: Evidence from OECD in vitro stably transfected transcriptional activation assays. Reprod Toxicol, 100, 52-59. doi:10.1016/j.reprotox.2020.12.014
    Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: A Target for Anticancer Therapy. Int J Mol Sci, 19(2). doi:10.3390/ijms19020448
    Pratt, I. S. (2002). Global harmonisation of classification and labelling of hazardous chemicals. Toxicology letters, 128(1-3), 5-15.
    Puerari, R. C., Ferrari, E., Oscar, B. V., Simioni, C., Ouriques, L. C., Vicentini, D. S., & Matias, W. G. (2021). Acute and chronic toxicity of amine-functionalized SiO2 nanostructures toward Daphnia magna. Ecotoxicology and Environmental Safety, 212, 111979. Retrieved from https://www.sciencedirect.com/science/article/pii/S0147651321000907. doi:https://doi.org/10.1016/j.ecoenv.2021.111979
    Qi, W., & Yuan, J. (2022). RIPK1 and RIPK3 form mosaic necrosomes. Nature Cell Biology, 24(4), 406-407. Retrieved from https://doi.org/10.1038/s41556-022-00879-y. doi:10.1038/s41556-022-00879-y
    Reif, D. M., Sypa, M., Lock, E. F., Wright, F. A., Wilson, A., Cathey, T., . . . Rusyn, I. (2013). ToxPi GUI: an interactive visualization tool for transparent integration of data from diverse sources of evidence. Bioinformatics, 29(3), 402-403. doi:10.1093/bioinformatics/bts686
    Ren, L., Chen, X., Chen, X., Li, J., Cheng, B., & Xia, J. (2020). Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells. Front Cell Dev Biol, 8, 580070. doi:10.3389/fcell.2020.580070
    Riss, T. L., O’Brien, M. A., Moravec, R. A., Kupcho, K., & Niles, A. L. (2004). Apoptosis Marker Assays for HTS. In S. Markossian, A. Grossman, K. Brimacombe, M. Arkin, D. Auld, C. Austin, J. Baell, T. D. Y. Chung, N. P. Coussens, J. L. Dahlin, V. Devanarayan, T. L. Foley, M. Glicksman, J. V. Haas, M. D. Hall, S. Hoare, J. Inglese, P. W. Iversen, S. C. Kales, M. Lal-Nag, Z. Li, J. McGee, O. McManus, T. Riss, P. Saradjian, G. S. Sittampalam, M. Tarselli, O. J. Trask, Jr., Y. Wang, J. R. Weidner, M. J. Wildey, K. Wilson, M. Xia, & X. Xu (Eds.), Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences.
    Ruan, C., Wang, C., Gong, X., Zhang, Y., Deng, W., Zhou, J., . . . Xue, Y. (2021). An integrative multi-omics approach uncovers the regulatory role of CDK7 and CDK4 in autophagy activation induced by silica nanoparticles. Autophagy, 17(6), 1426-1447. doi:10.1080/15548627.2020.1763019
    Schapaugh, A. W., McFadden, L. G., Zorrilla, L. M., Geter, D. R., Stuchal, L. D., Sunger, N., & Borgert, C. J. (2015). Analysis of EPA's endocrine screening battery and recommendations for further review. Regul Toxicol Pharmacol, 72(3), 552-561. doi:10.1016/j.yrtph.2015.05.028
    Sha, D., Chin, L. S., & Li, L. (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet, 19(2), 352-363. doi:10.1093/hmg/ddp501
    Shan, Z., Fa, W. H., Tian, C. R., Yuan, C. S., & Jie, N. (2022). Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging, 14(6), 2902-2919. Retrieved from https://doi.org/10.18632/aging.203969. doi:10.18632/aging.203969
    Shehata, A. M., Salem, F. M. S., El-Saied, E. M., Abd El-Rahman, S. S., Mahmoud, M. Y., & Noshy, P. A. (2021). Zinc Nanoparticles Ameliorate the Reproductive Toxicity Induced by Silver Nanoparticles in Male Rats. Int J Nanomedicine, 16, 2555-2568. doi:10.2147/ijn.S307189
    Shen, J., Yang, D., Zhou, X., Wang, Y., Tang, S., Yin, H., . . . Chen, J. (2019). Role of Autophagy in Zinc Oxide Nanoparticles-Induced Apoptosis of Mouse LEYDIG Cells. Int J Mol Sci, 20(16). doi:10.3390/ijms20164042
    Singh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods, 29(4), 300-311. doi:10.1080/15376516.2018.1553221
    Sosa-Ferrera, Z., Mahugo-Santana, C., & Santana-Rodríguez, J. J. (2013). Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples. BioMed Research International, 2013, 674838. Retrieved from https://doi.org/10.1155/2013/674838. doi:10.1155/2013/674838
    Sun, X., Lee, J., Navas, T., Baldwin, D. T., Stewart, T. A., & Dixit, V. M. (1999). RIP3, a Novel Apoptosis-inducing Kinase*. Journal of Biological Chemistry, 274(24), 16871-16875. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021925819728531. doi:https://doi.org/10.1074/jbc.274.24.16871
    Tahrir, F. G., Langford, D., Amini, S., Mohseni Ahooyi, T., & Khalili, K. (2019). Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. J Cell Physiol, 234(6), 8122-8133. doi:10.1002/jcp.27597
    Tang, Y., Chen, B., Hong, W., Chen, L., Yao, L., Zhao, Y., . . . Xu, H. (2019). ZnO Nanoparticles Induced Male Reproductive Toxicity Based on the Effects on the Endoplasmic Reticulum Stress Signaling Pathway. Int J Nanomedicine, 14, 9563-9576. doi:10.2147/ijn.S223318
    Tilokani, L., Nagashima, S., Paupe, V., & Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem, 62(3), 341-360. doi:10.1042/ebc20170104
    Tucci, P., Porta, G., Agostini, M., Dinsdale, D., Iavicoli, I., Cain, K., . . . Willis, A. (2013). Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis, 4(3), e549. doi:10.1038/cddis.2013.76
    Tung, C. W., Cheng, H. J., Wang, C. C., Wang, S. S., & Lin, P. (2020). Leveraging complementary computational models for prioritizing chemicals of developmental and reproductive toxicity concern: an example of food contact materials. Arch Toxicol, 94(2), 485-494. doi:10.1007/s00204-019-02641-0
    Vanden Berghe, T., Grootjans, S., Goossens, V., Dondelinger, Y., Krysko, D. V., Takahashi, N., & Vandenabeele, P. (2013). Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 61(2), 117-129. doi:10.1016/j.ymeth.2013.02.011
    Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., . . . Schue, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-408. Retrieved from <Go to ISI>://WOS:000299376700018. doi:10.1351/pac-rec-10-12-04
    Walters, C. R., Pool, E. J., & Somerset, V. S. (2014). Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 49(13), 1588-1601. Retrieved from <Go to ISI>://WOS:000341136200014. doi:10.1080/10934529.2014.938536
    Wang, F., Chen, Z., Wang, Y., Ma, C., Bi, L., Song, M., & Jiang, G. (2022). Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria. Environ Sci Technol, 56(9), 5706-5713. doi:10.1021/acs.est.1c08246
    Wang, H., An, P., Xie, E., Wu, Q., Fang, X., Gao, H., . . . Wang, F. (2017). Characterization of ferroptosis in murine models of hemochromatosis. Hepatology, 66(2), 449-465. doi:10.1002/hep.29117
    Wang, J., & Zhou, H. (2020). Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia&lt;b&gt;-&lt;/b&gt;reperfusion injury. Acta pharmaceutica Sinica. B, 10(10), 1866-1879. Retrieved from http://europepmc.org/abstract/MED/33163341
    https://doi.org/10.1016/j.apsb.2020.03.004
    https://europepmc.org/articles/PMC7606115
    https://europepmc.org/articles/PMC7606115?pdf=render. doi:10.1016/j.apsb.2020.03.004
    Wang, L., Zhang, T., Li, P., Huang, W., Tang, J., Wang, P., . . . Chen, C. (2015). Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 9(6), 6532-6547. Retrieved from https://doi.org/10.1021/acsnano.5b02483. doi:10.1021/acsnano.5b02483
    Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A., & Shao, L. (2018). Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine, 13, 8487-8506. doi:10.2147/ijn.S170723
    Wei, L., Wang, J., Chen, A., Liu, J., Feng, X., & Shao, L. (2017). Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells. Int J Nanomedicine, 12, 1891-1903. doi:10.2147/ijn.S129375
    Wree, A., Eguchi, A., McGeough, M. D., Pena, C. A., Johnson, C. D., Canbay, A., . . . Feldstein, A. E. (2014). NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology, 59(3), 898-910. doi:10.1002/hep.26592
    Xie, C., Zhou, X., Liang, C., Li, X., Ge, M., Chen, Y., . . . Zhong, C. (2021). Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J Exp Clin Cancer Res, 40(1), 266. doi:10.1186/s13046-021-02069-4
    Xue, Y., Wang, J., Huang, Y., Gao, X., Kong, L., Zhang, T., & Tang, M. (2018). Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Human & Experimental Toxicology, 37(12), 1293-1309. Retrieved from https://doi.org/10.1177/0960327118769718. doi:10.1177/0960327118769718
    Yu, K. N., Chang, S. H., Park, S. J., Lim, J., Lee, J., Yoon, T. J., . . . Cho, M. H. (2015). Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells. PLoS One, 10(6), e0131208. doi:10.1371/journal.pone.0131208
    Zhang, J., Liu, J., Ren, L., Wei, J., Duan, J., Zhang, L., . . . Sun, Z. (2018). PM2.5 induces male reproductive toxicity via mitochondrial dysfunction, DNA damage and RIPK1 mediated apoptotic signaling pathway. Science of The Total Environment, 634, 1435-1444. Retrieved from https://www.sciencedirect.com/science/article/pii/S0048969718311434. doi:https://doi.org/10.1016/j.scitotenv.2018.03.383
    Zhang, J., Qin, X., Wang, B., Xu, G., Qin, Z., Wang, J., . . . Zou, Z. (2017). Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis, 8(7), e2954. doi:10.1038/cddis.2017.337
    Zhang, X. F., Gurunathan, S., & Kim, J. H. (2015). Effects of silver nanoparticles on neonatal testis development in mice. Int J Nanomedicine, 10, 6243-6256. doi:10.2147/ijn.S90733
    Zhang, Y., Li, X., Jing, L., Zhou, G., Sang, Y., Gao, L., . . . Zhou, X. (2021). Decabromodiphenyl ether induces male reproductive toxicity by activating mitochondrial apoptotic pathway through glycolipid metabolism dysbiosis. Chemosphere, 285, 131512. Retrieved from https://www.sciencedirect.com/science/article/pii/S0045653521019846. doi:https://doi.org/10.1016/j.chemosphere.2021.131512
    Zhu, Y., Yang, T., Duan, J., Mu, N., & Zhang, T. (2019). MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY), 11(4), 1089-1109. doi:10.18632/aging.101766
    Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., . . . Zorov, D. B. (2018). Mitochondrial membrane potential. Anal Biochem, 552, 50-59. doi:10.1016/j.ab.2017.07.009

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE