簡易檢索 / 詳目顯示

研究生: 陳柏匡
Chen, Bo-Kuang
論文名稱: 以兩段式程序將有機廢棄物轉化成生質氫氣及生質甲烷之研究
Development of A Two-Stages process to Convert Organic Waste into Bio-hydrogen and Bio-methane
指導教授: 鄭幸雄
Cheng, Sheng-Shung
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 173
中文關鍵詞: 兩段式程序廚餘狼尾草生質氫氣生質甲烷蛋型消化
外文關鍵詞: Two-stages process, kitchen waste, napier grass, bio-hydrogen, bio-methane, egg-shaped digester
相關次數: 點閱:198下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現在日常生活中皆充斥著石化物料的現代,石化能源已是人類日常生活中不可或缺的重要資源,然而隨著現代科技快速且無限制的開發下,石化資源是日漸短絀,加上過度使用石化資源,使得大氣中的碳含量日益增高造成溫室效應,因此,找尋新的替代能源以及減緩溫室效應成為當代人必須解決的首要問題之一,而在中多的替代能源中,在台灣較缺乏地理環境優勢的狀況下,發展生質能源成為台灣可發展的主要替代能源之一。
    在本研究中,係以台灣目前一大宗的有機廢棄物─廚餘,以及一具有潛力的生質作物─狼尾草,作為本研究中主要的研究標的物,而在本研究中,是以兩段式的生物程序,去進行有機廢棄物的回收再利用,而本研究係以氫氣以及甲烷氣來回收有機廢棄物中的電子,藉此達到能源再生以及減廢之目的,而廚餘為一富含有機成分之物質(TVS =185 mg/g,-wet weight, moisture=80%),而其中50%的電子是以油脂為主要型態,而易利用的碳水化合物佔總電子量的16%,而其中揮發酸含量較少,含量最多的乳酸佔總電子量的4%,而次之的醋酸僅有2%。
    本研究中,以三個形式相同的I-CSTR作為酸化水解段,串聯一蛋型消化槽作為兩段式操作反應器,而於酸化水解段中,發現於負荷為10 g-COD/L/day時,其有最佳的產氣效益2.47±0.73 mmol-H2/g-COD,而在負荷為14.5 g-COD/L/day時則有最好的產速率0.69±0.21 L-H2/L/day,而負荷為10 g-COD/L/day情況下,所操作的酸化水解槽有乳酸降解之現象發生;而在甲烷消化段,在經過達220天的操作下,於最終穩定時已可操作在55oC,HRT=22天,負荷為4 g-COD/L/day,而其產氣速率可達平均48 mmol-CH4/L/day,而其效益可達16 mmolCH4/g-CODremoval,而在去除效益上可達總COD 80%的去除以及VSS去除率可達70%。
    而利用批次可發現於甲烷消化槽中其主要優勢菌群可能是以嗜氫性甲烷菌為主,而在消化槽中雖有丙酸降解之能力,但其對於甲烷產氣的貢獻不甚顯著,而在經過第一段酸化水解之產物於第二段消化處理時須注意其揮發酸過高所造成的抑制現象。
    以分子生物結果可發現,於穩定馴養後,相較於初期中溫的優勢菌群其豐富的多樣性,其反應槽體菌相趨於單一,且以Methanosarcina屬之菌群為主要優勢菌。

    In contemporary era, petroleum became one of the most important resources in the daily life. With the development of high technology andover-exploiting of petroleum, the absence of petroleum will become a serious problem. The increasing of carbon-dioxide content will contribute in global climate change. Thus, in order to relieve the crisis of energy shortage and prevent the global climate change, The urgency to find out a clean and renewable energy sources become one of the major attention. Despite the disadvantages from a worse geographical environment, development of bio-mass energy seems to be one of renewable energy which Taiwan could develop.
    In the present study, a thermophilic two-stages bio-process was conducted to convert the COD of the organic waste into bio-energy. withkitchen waste, which was one of the most abundant waste and the napier grass as the substrates. Kitchen waste contained with high nutritive composition (TVS= 185 mg/g, moisture = 80%). Lipid was the most dominant items in kitchen waste which contained more than 50% of electron while total carbohydrate only about 16%. Electron distribution of VFAs (volatile fatty acids) was about 6% which mainly contributed by lactic acid(4%) and acetic acid (2%).
    Three I-CSTR tanks were operated at the first stage and an egg-shaped digester was operated at the second stage. It was found that when volume loading rates (VLR) were designed at10 g-COD/L/day with HRT= 8 days and pH= 6, the best hydrogen yield 2.4±0.73 mmolH2/g-CODadded and the best hydrogen production rate (0.69±0.21 L-H2/L/day) achieved respectively when VLR= 14.5g-COD/L/day. The lactate was degraded obviously when the VLR was 10 g-COD/L/day. In the second stage, an egg-shaped tank was operated as a digester with VLR= 4 g-COD/L/day and HRT= 22 days. The methane production rate could achieve 48 mmol-CH4/L/day under the VLR= 4 g-COD/L/day and the methane yield was 16 mmol-CH4/g-CODremovalrespectively. The removal efficiency of the CODtotal and VSS could reach 80% and 70%, respectively.
    The batch test result detected that the dominant archaea might be the hydrogen-utilizing methanogen. The degradation of propionic acid did not contribute to methane production. The concentration of volatile fatty acid from first stage could inhibit the performance of methane production.
    By using the scanning electron microscope (SEM), it was found that there were plenty of microbes attached on the organic solids within the egg-shaped digester. And the community structure of microbes in thermophilic state became more simple than mesophilic ones. Methanosarcina became the main group in the egg-shaped digester.

    誌謝 I 摘要 II 圖目錄 IX 表目錄 XIV 第一章 前言 1 第二章 文獻回顧 3 2-1 全球能源現況與替代能源發展趨勢 3 2-2 台灣及各國之有機廢棄物利用現況 6 2-2-1 台灣廚餘回收及再利用之現況 6 2-2-2 各國廚餘廢棄物回收及再利用之現況 10 2-2-3 農業廢棄物與可再生之狼尾草資源 16 2-3 有機固體物厭氧消化機制 18 2-3-1 碳水化合物代謝機制 20 2-3-2 蛋白質厭氧水解機制 33 2-3-3 油脂厭氧水解機制 36 2-4 生質能源程序發展現況 39 2-4-1 生物產氫程序 39 2-4-2 生物產甲烷程序 43 2-4-3 兩段式生物程序 45 2-5 厭氧蛋型消化槽 47 第三章 研究材料與方法 52 3-1 反應槽槽體 52 3-1-1 I-CSTR批分次式完全攪拌反應槽 52 3-1-2 蛋型消化槽體(egg-shaped digester) 54 3-2 水質分析項目與使用儀器 56 3-2-1 一般水質分析項目 56 3-2-2 儀器分析 57 3-3 生化氫氣產能試驗及生物活性量測 59 3-3-1 生化甲烷產能試驗 59 3-3-2 生物活性量測數據整理方式 61 3-4 掃描式電子顯微鏡 Scanning Electron Microscope(SEM) 62 3-5 分子生物檢測技術 63 3-5-1 總DNA 萃取 63 3-5-2 聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 65 3-5-3 尾端修飾限制片段長度多形性(T-RFLP) 67 3-5-4 16S rRNA基因選殖實驗(clone library) 68 第四章 結果與討論 71 4-1 台南市廚餘及狼尾草特性分析 71 4-1-1 台南市廚餘特性分析 71 4-1-2 狼尾草特性分析 81 4-2 高溫水解酸化槽操作與功能評估 83 4-2-1 高溫水解酸化產氫槽啟動策略 83 4-2-2 酸化水解各槽操作參數與狀況及功能指標 86 4-3 高溫厭氧蛋型甲烷消化槽 101 4-3-1 蛋形消化槽體流力特性探討 101 4-3-2 植種源及操作策略選定 108 4-3-3 反應槽體中汙泥分布情況 110 4-3-4 反應槽操作參數與狀況及功能指標 113 4-4 甲烷消化槽生物動力特性探討 126 4-4-1 中溫轉至高溫及高溫馴養後之生物動力特性測試 126 4-4-2 丙酸於甲烷消化槽菌群動力特性之影響 133 4-4-3 兩段式與單段式生物回收效益評估 138 4-5 厭氧甲烷微生物族群結構之探討 146 4-5-1 以掃描式電子顯微鏡觀察厭氧消化槽體微生物之菌相 146 4-5-2 分子生物技術 T-RFLP 探討產菌族群變化 149 4-5-3 16S rRNA基因選殖實驗(clone library) 151 4-6 兩段式功能程序與文獻之比較 158 第五章 結論與建議 160 5-1 結論 160 5-2 建議 162 參考文獻 163

    Ahring, Birgitte K., Westermann, Peter, 1987. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria. Appl. Environ. Microbiol. 53, 429-433.
    Amon, T., Amon, B., Kryvoruchko, V., Machmuller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Potsch, E., Wagentristl, H., 2007a. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology 98, 3204-3212.
    Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L., 2007b. Biogas production from maize and dairy cattle manure--Influence of biomass composition on the methane yield. Agriculture, ecosystems & environment 118, 173-182.
    Angelidaki, I., Ahring, BK, 1992. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Applied Microbiology and Biotechnology 37, 808-812.
    Antonopoulou, Georgia, Gavala, Hariklia N., Skiadas, Ioannis V., Angelopoulos, K., Lyberatos, Gerasimos, 2008a. Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology 99, 110-119.
    Antonopoulou, Georgia, Stamatelatou, Katerina, Venetsaneas, Nikolaos, Kornaros, Michael, Lyberatos, Gerasimos, 2008b. Biohydrogen and Methane Production from Cheese Whey in a Two-Stage Anaerobic Process. Industrial & Engineering Chemistry Research 47, 5227-5233.
    Bahl H., P., Dürre, 1993. Clostridia, In Biotechnology: , 2 ed. Rehm HJ, Reed G, Pühler A and Stadler P, VCH Verlagsgesellschaft, Weinheim.
    Baker, GC, Cowan, D.A., 2004. 16 S rDNA primers and the unbiased assessment of thermophile diversity. Biochemical Society Transactions 32, 218-221.
    Barker, HA, 1981. Amino acid degradation by anaerobic bacteria. Annual Review of Biochemistry 50, 23-40.
    Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, SV, Pavlostathis, SG, Rozzi, A., Sanders, WTM, Siegrist, H., Vavilin, VA, 2002. The IWA Anaerobic Digestion Model No 1(ADM 1). Water Science & Technology 45, 65-73.
    Bertoldo, Costanzo, Antranikian, Garabed, 2001. Amylolytic enzymes from hyperthermophiles, in: Michael W.W. Adams, Robert M. Kelly (Ed.), Methods in Enzymology. Academic Press, pp. 269-290.
    BHAT, K., M., S., 1997. Cellulose degrading enzymes and their potential industrial applications. Elsevier, Kidlington, ROYAUME-UNI.
    Bryant, M. P., 1979. Microbial Methane Production--Theoretical Aspects. J. Anim Sci. 48, 193-201.
    Campbell M.K., S.O., Farrell, 2003. Bio-chemistry, 4th ed.
    Canganella F., J., Wiegel, 1993. The potential of thermophilic clostridia in biotechnology.
    Ching-Shyung, H., Donlon, B., Lettinga, G., 1996. Comparative toxicity of long-chain fatty acid to anaerobic sludges from various origins. Water Science and Technology 34, 351-358.
    Cho, J.K., Park, S.C., Chang, H.N., 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology 52, 245-253.
    Chu, Chun-Feng, Li, Yu-You, Xu, Kai-Qin, Ebie, Yoshitaka, Inamori, Yuhei, Kong, Hai-Nan, 2008. A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. International Journal of Hydrogen Energy 33, 4739-4746.
    Chynoweth, DP, Turick, CE, Owens, JM, Jerger, DE, Peck, MW, 1993. Biochemical methane potential of biomass and waste feedstocks. Biomass and Bioenergy 5, 95-111.
    Del Borghi, A., Converti, A., Palazzi, E., Del Borghi, M., 1999. Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste. Bioprocess and Biosystems Engineering 20, 553-560.
    Dichtl, N., 1997. Thermophilic and Mesophilic (Two-Stage) Anaerobic Digestion. Water and Environment Journal 11, 98-104.
    Diez-Gonzalez, Francisco, Russell, James, Hunter, Jean, 1995. The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262. Archives of Microbiology 164, 36-42.
    FAO, United Nations, 1970. Amino Acid Content of Foods and Biological Data on Proteins, in: Organisation, Food and Agriculture (Ed.), United Nation, Rome, Italy.
    Forster-Carneiro, T., Perez, M., Romero, LI, Sales, D., 2007. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources. Bioresource Technology 98, 3195-3203.
    Fukuzaki, Satoshi, Nishio, Naomichi, Nagai, Shiro, 1990. Kinetics of the Methanogenic Fermentation of Acetate. Appl. Environ. Microbiol. 56, 3158-3163.
    Gijzen, Huub J., Zwart, Kor B., Verhagen, Frank J. M., Vogels, Godfried P., 1988. High-Rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnology and Bioengineering 31, 418-425.
    Girbal, L, Soucaille, P, 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176, 6433-6438.
    Gottschalk, G., 1986. Bacterial metabolism. Springer series in microbiology.
    Gunaseelan, V.N., 2004. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy 26, 389-399.
    Han, S.K., Shin, H.S., 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane. Journal of the Air & Waste Management Association 54, 242-249.
    Hanaki, Keisuke, Matsuo, Tomonori, Nagase, Michihiko, 1981. Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnology and Bioengineering 23, 1591-1610.
    Held, Christof, Wellacher, Martin, Robra, Karl-Heinz, Gübitz, Georg M., 2002. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors. Bioresource Technology 81, 19-24.
    Henderson, C., 1973. The effects of fatty acids on pure cultures of rumen bacteria. The Journal of Agricultural Science 81, 107-112.
    Hovey, Raymond, Lentes, Sabine, Ehrenreich, Armin, Salmon, Kirsty, Saba, Karla, Gottschalk, Gerhard, Gunsalus, Robert, Deppenmeier, Uwe, 2005. DNA microarray analysis of <i>Methanosarcina mazei</i> Gö1 reveals adaptation to different methanogenic substrates. Molecular Genetics and Genomics 273, 225-239.
    Hussy, I., Hawkes, FR, Dinsdale, R., Hawkes, DL, 2003. Continuous fermentative hydrogen production from a wheat starch co product by mixed microflora. Biotechnology and Bioengineering 84, 619-626.
    Jetten, M.S.M., Stams, A.J.M., Zehnder, A.J.B., 1992. Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiology Letters 88, 181-197.
    Kida, Kenji, Morimura, Shigeru, Sonoda, Yorikazu, 1993. Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-Shochu making. Journal of Fermentation and Bioengineering 75, 213-216.
    Kim, S.H., Han, S.K., Shin, H.S., 2004. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy 29, 1607-1616.
    Klijn, N., Bovie, C., Dommes, J., Hoolwerf, JD, Van der Waals, CB, Weerkamp, AH, Nieuwenhof, FFJ, 1994. Identification of Clostridium tyrobutyricum and related species using sugar fermentation, organic acid formation and DNA probes based on specific 16S rRNA sequences. Systematic and applied microbiology 17, 249-256.
    Kontturi, Eero, Tammelin, Tekla, Osterberg, Monika, 2006. Cellulose-model films and the fundamental approach. Chemical Society Reviews 35, 1287-1304.
    Koster, I.W., Cramer, A., 1987. Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids. Applied and environmental microbiology 53, 403.
    Krzycki, J. A., Kenealy, W. R., DENiro, M. J., Zeikus, J. G., 1987. Stable Carbon Isotope Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or Carbon Dioxide-Hydrogen. Appl. Environ. Microbiol. 53, 2597-2599.
    Lay, J.J., 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering 68, 269-278.
    Lay, J.J., Lee, Y.J., Noike, T., 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research 33, 2579-2586.
    Lee, Joon, Lee, Jin, Park, Soon, 1999. Two-phase methanization of food wastes in pilot scale. Applied Biochemistry and Biotechnology 79, 585-593.
    Leschine, Susan B., 1995. CELLULOSE DEGRADATION IN ANAEROBIC ENVIRONMENTS. Annu. Rev. Microbiol. 49, 399-426.
    Li, Rongping, Chen, Shulin, Li, Xiujiu, 2010. Biogas Production from Anaerobic Co-digestion of Food Waste with Dairy Manure in a Two-Phase Digestion System. Applied Biochemistry and Biotechnology 160, 643-654.
    Liu, Dawei, Liu, Dapeng, Zeng, Raymond J., Angelidaki, Irini, 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research 40, 2230-2236.
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J., 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and environmental microbiology 63, 4516.
    Lueders, Tillmann, Friedrich, Michael, 2000. Archaeal Population Dynamics during Sequential Reduction Processes in Rice Field Soil. Appl. Environ. Microbiol. 66, 2732-2742.
    Lynd, Lee R., Weimer, Paul J., van Zyl, Willem H., Pretorius, Isak S., 2002. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577.
    Madigan, M.T., Martinko, J.M., Parker, J., Brock, T.D., 2000. Biology of microorganisms. Prentice Hall.
    Maquenne, Roux, 1903. Sur la rétrogradation de l'empois d'amidon. Compt. rend.
    McInerney, Michael J., Bryant, Marvin P., 1981. Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina barkeri and Desulfovibrio Species and Effect of H2 on Acetate Degradation. Appl. Environ. Microbiol. 41, 346-354.
    Mellanby, John, 1919. The Composition of Starch. Part I. Precipitation by Colloidal Iron. Part II. Precipitation by Iodine and Electrolytes. Biochemical Journal, 28-36.
    Metcalf, L., Eddy, H.P., Tchobanoglous, G., 1991. Wastewater engineering: treatment, disposal, reuse. McGraw-Hill New York.
    Miller, TL, Wolin, MJ, 1979. Fermentations by saccharolytic intestinal bacteria. The American Journal of Clinical Nutrition 32, 164-172.
    Miron, Y., Zeeman, G., Van Lier, J.B., Lettinga, G., 2000. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research 34, 1705-1713.
    Moller, H.B., Sommer, S.G., Ahring, B.K., 2000. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Methane productivity and nutrient recovery from manure 74, 496.
    Moller, HB, Sommer, S.G., Ahring, B.K., 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy 26, 485-495.
    Nagase, M., Matsuo, T., 1982. Interactions between amino acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnology and Bioengineering 24, 2227-2239.
    Novak, J.T., Carlson, D.A., 1970. The kinetics of anaerobic long chain fatty acid degradation. Journal (Water Pollution Control Federation) 42, 1932-1943.
    Oude Elferink, Stefanie J. W. H., Krooneman, Janneke, Gottschal, Jan C., Spoelstra, Sierk F., Faber, Folkert, Driehuis, Frank, 2001. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67, 125-132.
    Owen, W. F., Stuckey, D. C., Healy Jr, J. B., Young, L. Y., McCarty, P. L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research 13, 485-492.
    Owens, JM, Chynoweth, DP, 1993. Biochemical methane potential of municipal solid waste(MSW) components. Water Science & Technology 27, 1-14.
    P. Capros, L. Mantzos, N. Tasios, A. De Vita, Kouvaritakis, N., 2010. EU energy treands to 2030 European, p. 184.
    Parawira, W., Murto, M., Read, J. S., Mattiasson, B., 2005. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochemistry 40, 2945-2952.
    PATEL, GIRISHCHANDRA B., SPROTT, G. DENNIS, 1990. Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40, 79-82.
    Pavlostathis, SG, Giraldo-Gomez, E., 1991a. Kinetics of anaerobic treatment. Water Science and Technology WSTED 4 24.
    Pavlostathis, SG, Giraldo-Gomez, E., 1991b. Kinetics of anaerobic treatment: a critical review. Critical Reviews in Environmental Science and Technology 21, 411-490.
    Peters, John W., 1999. Structure and mechanism of iron-only hydrogenases. Current Opinion in Structural Biology 9, 670-676.
    Petersen, Domela, 2003. Composition of Household Waste and Arrangements for Home Composting.
    Petersson, A., Thomsen, M.H., Hauggaard-Nielsen, H., Thomsen, A.B., 2007. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenergy 31, 812-819.
    Pohland, FG, Ghosh, S., 1971. Developments in anaerobic stabilization of organic wastes--the two-phase concept. Environmental letters 1, 255.
    Ramsay, I.R., 1997. Modelling and Control of High-Rate Anaerobic Wastewater Treatment Systems. University of Queensland, Brisbane.
    Reith, JH, Wijffels, RH, Barten, H., 2003. Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation.
    Rinzema, A., Alphenaar, A., Lettinga, G., 1989. The effect of lauric acid shock loads on the biological and physical performance of granular sludge in UASB reactors digesting acetate. Journal of Chemical Technology & Biotechnology 46, 257-266.
    Rittmann, B.E., McCarty, P.L., 2001a. Environmental biotechnology: principles and applications. McGraw-Hill.
    Rittmann, B.E., McCarty, P.L., 2001b. Environmental biotechnology: principles and applications. McGraw-Hill New York.
    RIVARD, CHRISTOPHER J., SMITH, PAUL H., 1982. Isolation and Characterization of a Thermophilic Marine Methanogenic Bacterium, Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32, 430-436.
    Rollon, A.P., 1999. Anaerobic digestion of fish processing wastewater with special emphasis on hydrolysis of suspended solids. Routledge.
    Roy, F., Albagnac, G., Samain, E., 1985. Influence of calcium addition on growth of highly purified syntrophic cultures degrading long-chain fatty acids. Applied and environmental microbiology 49, 702.
    Ruane, John, Sonnino, Andrea, Agostini, Astrid, 2010. Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass and Bioenergy 34, 1427-1439.
    Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews 61, 262.
    Schnurer, A., Zellner, G., Svensson, B.H., 1999. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS microbiology ecology 29, 249-261.
    Seghezzo, Lucas, Zeeman, Grietje, van Lier, Jules B., Hamelers, H. V. M., Lettinga, Gatze, 1998. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology 65, 175-190.
    Shen, G.J., Annous, BA, Lovitt, RW, Jain, MK, Zeikus, JG, 1996. Biochemical route and control of butyrate synthesis in Butyribacterium methylotrophicum. Applied Microbiology and Biotechnology 45, 355-362.
    Sheu, C.W., Freese, E., 1972. Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. Journal of Bacteriology 111, 516.
    Shin, H.S., Youn, J.H., 2005. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16, 33-44.
    Song, Young-Chae, Kwon, Sang-Jo, Woo, Jung-Hui, 2004. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Research 38, 1653-1662.
    Sousa, Diana Z., Pereira, M. Alcina, Stams, Alfons J. M., Alves, M. Madalena, Smidt, Hauke, 2007. Microbial Communities Involved in Anaerobic Degradation of Unsaturated or Saturated Long-Chain Fatty Acids. Appl. Environ. Microbiol. 73, 1054-1064.
    Stams, Alfons J. M., Grolle, Katja C. F., Frijters, Carla T. M., Van Lier, Jules B., 1992. Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl. Environ. Microbiol. 58, 346-352.
    Stukenberg, JR, Clark, JH, Sandino, J., Naydo, WR, 1992. Egg-Shaped Digesters: From Germany to the U. S.
    Takai, Ken, Horikoshi, Koki, 1999. Genetic Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments. Genetics 152, 1285-1297.
    Tanisho, S., Kuromoto, M., Kadokura, N., 1998. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy 23, 559-563.
    Thauer, R.K., Jungermann, K., Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria. Microbiology and Molecular Biology Reviews 41, 100.
    Ueno, Y., Sasaki, D., Fukui, H., Haruta, S., Ishii, M., Igarashi, Y., 2006. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. Journal of Applied Microbiology 101, 331-343.
    Ueno, Yoshiyuki, Fukui, Hisatomo, Goto, Masafumi, 2007. Operation of a Two-Stage Fermentation Process Producing Hydrogen and Methane from Organic Waste. Environmental Science & Technology 41, 1413-1419.
    Van Ginkel, S.W., Oh, S.E., Logan, B.E., 2005. Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy 30, 1535-1542.
    Van Lier, J.B., 1995. Thermophilic anaerobic wastewater treatment; temperature aspects and process stability. Environmental Engineering, Wageningen Agricultural University: Wageningen, The Netherlands, 181.
    Vergara-Fernández, Alberto, Vargas, Gisela, Alarcón, Nelson, Velasco, Antonio, 2008. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy 32, 338-344.
    Volpe, G., Keaney, J., Schlegel, P., Roser, S., Tyler, C., Carr, J., Nagel, J., 2004. LARGE EGG-SHAPED DIGESTERS ISSUES AND IMPROVEMENTS. Proceedings of the Water Environment Federation 2004, 496-513.
    Wang, Zhengjian, Banks, Charles J., 2003. Evaluation of a two stage anaerobic digester for the treatment of mixed abattoir wastes. Process Biochemistry 38, 1267-1273.
    Wikipedia, 2011. Cellulase.
    Wyatt, Sarah E., Carpita, Nicholas C., 1993. The plant cytoskeleton-cell-wall continuum. Trends in Cell Biology 3, 413-417.
    Yamamoto, Nozomi, Asano, Ryoki, Yoshii, Hiroki, Otawa, Kenichi, Nakai, Yutaka, 2011. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Applied Microbiology and Biotechnology 90, 1501-1510.
    YL, Y., Noike, T., Katsumata, K., Koubayashi, H., 1996. Performance analysis of the full-scale egg-shaped digester in treating sewage sludge of high concentration. Water Science and Technology 34, 483-491.
    Zellner, Gerhard, Boone, David R., Keswani, Jyoti, Whitman, William B., Woese, Carl R., Hagelstein, Anja, Tindall, B. J., Stackebrandt, Erko, 1999. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int J Syst Bacteriol 49, 247-255.
    Zhu, Heguang, Stadnyk, Aaron, Béland, Michel, Seto, Peter, 2008. Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresource Technology 99, 5078-5084.
    Zwietering, M. H., Jongenburger, I., Rombouts, F. M., VAN 'T Riet, K., 1990. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 56, 1875-1881.
    王炳南, 2005. 厭氧發酵產氫與光合產氫之反應槽串聯可行性評估, 環境工程學系. 國立中興大學, 台中市, p. 130.
    王郁萱, 2008. 高溫廚餘厭氧氫醱酵程序控制與水解機制之研究, 環境工程學系碩博士班. 國立成功大學, p. 130.
    白明德, 1999. 厭氧生物產氫機制與程序操作策略之研究, 環境工程學系. 國立成功大學, p. 100.
    成游貴, 2005. 狼尾草台畜二號-生產及利用管理. Taiwan livestock research institute, Taiwan, Tainan.
    成游貴, 2006. 狼尾草育種與多元化利用. 科學發展, 24~29.
    行政院農委會, 2009. 農業廢棄物排放帳, Taiwan.
    呂碧芬, 2008. 紫色不含硫光合細菌與藍綠細菌共培養產氫可行性之評估, 環境工程學系所. 中興大學, p. 110.
    李學霖, 2005. 單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究, 環境工程學系碩博士班. 國立成功大學, p. 126.
    李澤坤, 2008. 蔬菜廚餘厭氧氫醱酵程序及流體化床醱酵槽改良設計之研究, 環境工程學系碩博士班. 國立成功大學, p. 198.
    林建勝, 2007a. 以生質能源程序探討廚餘厭氧氫醱酵之研究, 環境工程學系碩博士班. 國立成功大學, p. 182.
    林建勝, 2007b. 以生質能源程序探討廚餘厭氧產氫之研究, Taiwan Tainan.
    林瑤玓, 2002. 紫色不含硫光合作用細菌於連續流產氫之研究, 環境工程學系. 國立中興大學, p. 110.
    洪國展, 2004. 光合產氫之程序組合及應用, 環境工程學系. 國立中興大學, p. 0.
    涂良君, 1999. 產氫光合作用細菌之分離與篩選, 環境工程學系. 國立中興大學, p. 117.
    張仕旻, 2002. 利用薄膜反應器於高溫厭氧產氫生物程序之研究, 環境工程學系碩博士班. 國立成功大學, p. 110.
    郭世強, 2006. 廚餘厭氧醱酵產氫程序之功能評估, 環境工程學系碩博士班. 國立成功大學, p. 121.
    陳怡傑, 2009. 以厭氧流體化床進行廚餘過篩液及狼尾草之氫醱酵程序研究, 環境工程學系碩博士班. 國立成功大學, p. 164.
    陳晉照, 2002. CSTR系統厭氧產氫之研究, 土木及水利工程研究所. 逢甲大學, p. 150.
    黃仁晞, 2001. 廚餘回收再利用 (二), Taiwan, Taichung.
    黃基森, 1998. 有機廢棄物堆肥化處理現況及政策, 第一屆廢棄物清理實務研討會.
    董昀昌, 2001. 產氫光合作用細菌利用厭氧產氫程序放流水的產氫能力研究, 環境工程學系. 國立中興大學, 台中市, p. 118.
    趙禹杰, 2004. 澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估, 環境工程學系碩博士班. 國立成功大學, p. 141.
    蕭景庭, 2000. 產氫光合作用細菌之生理特性研究, 環境工程學系. 國立中興大學, 台中市, p. 115.
    蕭嘉瑢, 2004. 複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究, 環境工程學系碩博士班. 國立成功大學, 台南市, p. 123.

    下載圖示 校內:2013-08-03公開
    校外:2013-08-03公開
    QR CODE