簡易檢索 / 詳目顯示

研究生: 蘇胤毓
Su, Yin-Yu
論文名稱: 具串聯彈性致動與錯位適應之前臂復健機器人設計
Design of a Forearm Rehabilitation Robot with Series Elastic Actuation and Misalignment Adaptation
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 155
中文關鍵詞: 前臂復健機器串聯彈性致動器等效慣性等效勁度錯位適應機構
外文關鍵詞: Forearm rehabilitation robot, series elastic actuator, misalignment-adaptive mechanism, equivalent inertia, equivalent stiffness
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文開發一具三自由度之前臂復健機器,分為腕部復健機器與滾轉機構,可帶動手掌做出尺偏/橈偏、腕屈曲/伸張以及旋前/旋後三個運動,用以協助患者進行復健療程。有別於現存端效器型或串聯式外甲型復健機器,本文提出以球面五連桿機構與曲柄滑塊機構所設計之腕部復健機器,外形貼近人體前臂,整體重量輕使機器具輕巧性以及可攜性。使用串聯彈性致動器取代剛性致動器,以撓性驅動方式驅動腕部復健機器,利用光學尺感測彈簧的變形量即可進行力量回授控制,使得復健機器不需額外安裝昂貴的力量感測器即可達成人機互動控制功能。不同於剛性致動器,使用串聯彈性致動器之復健機器可感測外界施力狀況,讓手掌可以推動機器,達到逆向驅動的功能。
    為了阻抗控制模型建立,對前臂復健機器進行等效慣性分析。除利用齒輪對所設計的滾轉機構等效慣量計算,本文提出三種針對並聯式機構的腕部復健機器,不同輸入速度比例的等效質量計算假設方式。以力平衡法計算端效器輸出勁度與串聯彈性致動器虛擬輸入勁度之關係,可用於阻力模式訓練。
    於端效器處設計錯位適應機構,用於解決人機錯位問題,除可讓機器適用於不同肢體尺寸的使用者,也可適應穿戴錯誤或關節不理想性所造成的錯位。錯位適應機構的設計以被動接頭作為基礎,減少致動器的使用,針對前臂復健機器獨立使用以及與肘部復健機器結合時的兩種狀況進行設計,選擇限制自由度來用於不同狀況。本研究最後對15位受試者進行實驗,得出在有錯位適應機構作用下,機器輸出力需求會較無作用下來得低的結論。

    Exoskeletons robots can provide direct motion assistance and measurement for human limbs. They have been demonstrated to provide repeated and progressive rehabilitation training required for the effective recovery of patients with limb disabilities. To meet the requirement of assistance at different rehabilitation stages, active or passive exoskeleton robots of multiple degrees-of-freedom (DoFs) have been developed to assist the motion of human upper limbs or lower limbs. This thesis presents a forearm exoskeleton with three degrees-of-freedom including wrist flexion/extension (WFE), radial/ulnar deviation (RU), and pronation/supination (PS). Using geared bearing, parallel spherical mechanism,and slider crank mechanism, this exoskeleton can provide the complete motion assistance for the forearm. The optimized exoskeleton dimensions allow large torque and motion output while the motors are placed parallel to the forearm.
    Linear series elastic actuators (SEAs) for WFE and RU motion are proposed to accurately measure and control the interaction force and impedance between exoskeleton and forearm. To complete the impedance control model, the input and output mass of SEA are analyzed by conservation of momentum. The input virtural stiffness is calculated by static force analysis A misalignment -adaptive mechanism with only passive joints is introduced to compensate for the exoskeleton-limb misalignment and size variation among different subjects. The resulting 1.68-kg exoskeleton be used alone or easily in combination with other exoskeleton robots to provide various robot-aided forearm rehabilitation.

    摘要 I English Abstract II 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVII 符號說明 XXVI 第一章 緒論 1 1.1 背景介紹 1 1.2 復健機器之文獻回顧 4 1.2.1 復健機器驅動方式 5 1.2.2 復健機器機構型式分類 6 1.2.3 復健機器感測方式分類 7 1.2.4 復健機器轉軸順序分類 8 1.2.5 復健機器錯位適應機構的有無 9 1.2.6 旋前/旋後轉軸設計 10 1.3 研究動機與目標 12 1.4 論文架構 13 第二章 前臂復健機器設計概念 14 2.1 前言 14 2.2 人體前臂相關資訊 14 2.2.1 前臂復健之動作 14 2.2.2 人腕關節模型 15 2.2.3 前臂尺寸與慣性參數 18 2.3 腕部復健機器 20 2.3.1 腕部雙自由度機構選用 21 2.3.2 腕部兩自由度機構位置分析 23 2.3.3 腕部兩自由度機構力量分析 30 2.3.4 腕部兩自由度機構設計 32 2.3.5 腕部兩自由度機構奇異性分析 38 2.4 腕部復健機器動力輸入機構 42 2.4.1 致動器選用 42 2.4.2 串聯彈性致動器 44 2.4.3 轉向機構位置分析 46 2.4.4 轉向機構力量分析 49 2.4.5 轉向機構最佳化設計 50 2.4.6 轉向機構奇異性分析 54 2.5 旋前/旋後驅動機構 55 2.5.1 滾轉機構選用 55 2.5.2 滾轉機構位置與力量分析 57 2.6 本章小結 58 第三章 前臂復健機器原型設計 60 3.1 前言 60 3.2 前臂復健機器第一型原型設計 60 3.2.1 第一型球面五連桿與轉向機構設計 61 3.2.2 第一型線性致動器與前臂墊設計 66 3.2.3 第一型原型實作 73 3.3 前臂復健機器第二型原型設計 75 3.3.1 第二型球面五連桿設計與相關參數整理 75 3.3.2 第二型線性致動器設計與相關參數整理 84 3.3.3 第二型滾轉機構設計與相關參數整理 89 3.3.4 第二型前臂復健機器ANSYS應力分析 93 3.3.5 第二型原型實作 96 3.4 本章小結 98 第四章 前臂復健機器阻抗控制模型參數分析 99 4.1 前言 99 4.2 質心位置計算 99 4.3 等效慣性計算 102 4.3.1 腕部復健機器等效質量 102 4.3.2 滾轉機構等效轉動慣量 111 4.4 虛擬輸入勁度分析與虛擬輸出全向勁度實現 112 4.4.1 中性姿態 113 4.4.2 任意參考位置 121 4.5 本章小結 128 第五章 錯位適應機構設計與驗證 130 5.1 前言 130 5.2 錯位適應機構必要性討論與設計 130 5.2.1 錯位適應機構之必要性 130 5.2.2 前臂復健機器之錯位適應機構 132 5.2.3 含肘部復健機器之錯位適應機構 135 5.3 錯位適應機構實驗結果 137 5.3.1 實驗配置 138 5.3.2 實驗結果 139 5.4 本章小結 144 第六章 結論與未來工作 145 6.1 結論 145 6.2 未來工作 147 參考文獻 150

    [1] World Health Organization. (2002). Active ageing: A policy framework (No. WHO/NMH/NPH/02.8). Geneva: World Health Organization
    [2] Ministry of Health and Welfare. "2020健康國民白皮書" https://www.mohw.gov.tw /cp-26-36493-1.html [Accessed: January 29, 2019]
    [3] Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., ... & Lang, C. E. (2016). Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 47(6), e98-e169.
    [4] "Few Selected Upper Limb Nerve Injuries [Highly Tested Topic] " https://www. youtube.com/watch?v=lrk3dnuGITk [Accessed: January 29, 2019]
    [5] Clarkson, H. M. (2000). Musculoskeletal assessment: joint range of motion and manual muscle strength. Lippincott Williams & Wilkins.
    [6] Sicuri, C., et al. Robotics in shoulder rehabilitation. Muscles, ligaments and tendons journal 4.2 (2014): 207.
    [7] Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28(4), 922-931
    [8] Motorika " ReoGOTM " http://motorika.com/reogo/ [Accessed: January 29, 2019]
    [9] Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2), 127-142
    [10] Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., & Feys, P. (2011). The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. Journal of neuroengineering and rehabilitation, 8(1), 5
    [11] Brunnström, S. Movement therapy in hemiplegia: a neurophysiological approach. Facts and Comparisons, 1970.
    [12] Pezent, E., Rose, C. G., Deshpande, A. D., & O'Malley, M. K. (2017, July). Design and characterization of the openwrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. In Rehabilitation Robotics (ICORR), 2017 International Conference on (pp. 720-725). IEEE
    [13] Fourier Intelligence " Fourier M2" http://www.fftai.com/zixun_en/zixun_bk.php?i d=186 [Accessed: January 29, 2019]
    [14] Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE transactions on neural systems and rehabilitation engineering, 15(3), 327-335
    [15] Perry, J. C., Rosen, J., & Burns, S. (2007). Upper-limb powered exoskeleton design. IEEE/ASME transactions on mechatronics, 12(4), 408-417
    [16] French, J. A., Rose, C. G., & O’malley, M. K. (2014, October). System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation. In ASME 2014 Dynamic Systems and Control Conference (pp. V003T43A006-V003T43A006). American Society of Mechanical Engineers
    [17] Buongiorno, D., Sotgiu, E., Leonardis, D., Marcheschi, S., Solazzi, M., & Frisoli, A. (2018). WRES: a novel 3DoF WRist ExoSkeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation. IEEE Robotics and Automation Letters
    [18] 幸福生活創藝館, "CPM定義與緣起", http://supervisor.com.tw/cpm-yuan-qi/
    [19] Gopura, R. A. R. C., & Kiguchi, K. (2008). An exoskeleton robot for human forearm and wrist motion assist. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2(6), 1067-1083
    [20] Andrews, J. G., and Y. Youm (1979). A biomechanical investigation of wrist kinematics. J.‘Biomkhanics 12, 83-93.
    [21] Martinez, J. A., Ng, P., Lu, S., Campagna, M. S., & Celik, O. (2013, June). Design of wrist gimbal: A forearm and wrist exoskeleton for stroke rehabilitation. In Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on (pp. 1-6). IEEE
    [22] Hong, M., Kim, S. J., & Kim, K. (2013, October). KULEX: ADL power assistant robotic system for the elderly and the disabled (Abstract for video). In Ubiquitous Robots and Ambient Intelligence (URAI), 2013 10th International Conference on (pp. 121-122). IEEE.
    [23] Xu, D., Zhang, M., Sun, Y., Zhang, X., Xu, H., Li, Y., ... & Xie, S. Q. (2018, July). Development of a Reconfigurable Wrist Rehabilitation Device with an Adaptive Forearm Holder. In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 454-459). IEEE
    [24] Saadatzi, M., Long, D. C., & Celik, O. (2018). Comparison of Human-Robot Interaction Torque Estimation Methods in a Wrist Rehabilitation Exoskeleton. Journal of Intelligent & Robotic Systems, 1-17.
    [25] 陳典賦,中華民國一○五年。「並聯驅動肩外甲自適復健機器之設計」,成功大學機械工程學系碩士學位論文。
    [26] Squeri, V., Masia, L., Giannoni, P., Sandini, G., & Morasso, P. (2014). Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. IEEE Trans Neural Syst Rehabil Eng, 22(2), 312-325
    [27] Omarkulov, N., Telegenov, K., Zeinullin, M., Tursynbek, I., & Shintemirov, A. (2016, June). Preliminary mechanical design of NU-Wrist: A 3-DOF self-aligning Wrist rehabilitation robot. In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on (pp. 962-967). IEEE.
    [28] Bian, H., Chen, Z., Wang, H., & Zhao, T. (2017, July). Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation. In Rehabilitation Robotics (ICORR), 2017 International Conference on (pp. 689-694). IEEE.
    [29] Khokhar, Z. O., Xiao, Z. G., & Menon, C. (2010). Surface EMG pattern recognition for real-time control of a wrist exoskeleton. Biomedical engineering online, 9(1), 41
    [30] Pehlivan, A. U., Sergi, F., Erwin, A., Yozbatiran, N., Francisco, G. E., & O'Malley, M. K. (2014). Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. Robotica, 32(8), 1415-1431.
    [31] Keller, U., Rauter, G., & Riener, R. (2013, June). Assist-as-needed path control for the PASCAL rehabilitation robot. In Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on (pp. 1-7). IEEE.
    [32] Oblak, J., Cikajlo, I., & Matjacic, Z. (2010). Universal haptic drive: A robot for arm and wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 293-302
    [33] 吳冠毅,中華民國一○七年。「肘外甲機器之串聯彈性致動機構與驅動控制器設計」,成功大學機械工程學系碩士學位論文
    [34] Rosen, J., Perry, J. C., Manning, N., Burns, S., & Hannaford, B. (2005, July). The human arm kinematics and dynamics during daily activities-toward a 7 DOF upper limb powered exoskeleton. In Advanced Robotics, 2005. ICAR'05. Proceedings., 12th International Conference on (pp. 532-539). IEEE.
    [35] 王明揚、王茂駿、黃雪玲、遊志雲、李永輝、何明泉與石裕川,中華民國八十五年。「勞工靜態與動態人體計測資料庫之量測(II)」,行政院勞工委員會勞工安全衛生研究所。
    [36] Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M., & Young, J. W. (1975). Investigation of inertial properties of the human body (No. AMRL-TR-74-137). AIR FORCE AEROSPACE MEDICAL RESEARCH LAB WRIGHT-PATTERSON AFB OH
    [37] 朱證裕,中華民國一○四年。「發展一撓性仿人腕驅動器於親和人機互動」,成功大學機械工程學系碩士學位論文。
    [38] 林永信,中華民國一○二年。「球面機構應用於機器手臂的動態分析」,國立中央大學機械工程研究所碩士學位論文。
    [39] BIONIK " InMotion WRIST™" http://bionikusa.com/healthcarereform/upper-extremity -rehabilitiation/inmotion-wrist/ [Accessed: January 29, 2019]
    [40] Oriental motor USA Corp. (2017) "Stepper Motors (Motor Only) - PKP Series 2-Phase" https://www.orientalmotor.com.tw/products/st/list/detail/?product_name=PKP214D06A%2BCVD206B-K&brand_tbl_code=ST&series_code=HT00&type_code=&bradn_ tbl_code=ST [Accessed: January 29, 2019]
    [41] THK CO., LTD."產品訊息 -交叉滾柱軸承" https://tech.thk.com/ct/products /pdfs/tc_a18_028.pdf [Accessed: January 29, 2019]
    [42] Shayangye "行星式齒輪減速箱產品說明網頁" http://www.shayangye.com/product-inner.aspx?f=x&i=45 [Accessed: January 29, 2019]
    [43] 廖英星,中華民國八十二年。「具最少層數之平面連桿機構的最佳排列」,國立成功大學機械工程研究所碩士學位論文。
    [44] 簡隸,中華民國一○五年。「使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制」,國立成功大學機械工程研究所碩士學位論文。
    [45] Renishaw, Inc. (2001) "ATOM™ 編碼器系列" http://www.renishaw.com.tw/tw/atom-encoder-series--37564 [Accessed: January 29, 2019]
    [46] MISUMI Group Inc. " MISUMI-螺桿選定方法" https://tw.misumi-ec.com/maker /misumi/mech/product/ls/choice/ [Accessed: January 29, 2019]
    [47] MathWorks® "Specifying Custom Inertias" https://www.mathworks.com/help/physmod /sm/ug/specify-custom-inertia.html [Accessed: January 29, 2019
    [48] MISUMI Group Inc. " MISUMI-皮帶輪型錄" https://tw.c.misumi-ec.com/book/tw _2015_msm_fa_01/digitalcatalog.html?page_num=1-1431-2015 [Accessed: January 29, 2019]
    [49] MISUMI Group Inc. " MISUMI-皮帶型錄" https://tw.c.misumi-ec.com/book/tw _2015_msm_fa_01/digitalcatalog.html?page_num=1-1499-2015 [Accessed: January 29, 2019]
    [50] MISUMI Group Inc. " MISUMI-螺栓鎖固力說明" https://tw.misumi-ec.com /pdf/fa/p2849.pdf [Accessed: January 29, 2019]
    [51] THK CO., LTD."交叉滾柱軸承安裝教學" https://tech.thk.com/ct/products/pdf /tc_a18_032.pdf#1 [Accessed: January 29, 2019]
    [52] Gupta, A., O'Malley, M. K., Patoglu, V., & Burgar, C. (2008). Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training. The International Journal of Robotics Research, 27(2), 233-251.
    [53] Hall, A. S. (1987). Notes on mechanism analysis. Waveland Pr Inc.
    [54] 尤應龍,中華民國一○七年。「開發微型串聯彈性致動器於遠端操作機器人的精準力感知與控制」,成功大學機械工程學系碩士學位論文。
    [55] Dehem, S., Gilliaux, M., Lejeune, T., Detrembleur, C., Galinski, D., Sapin, J., ... & Stoquart, G. (2017). Assessment of upper limb spasticity in stroke patients using the robotic device REAplan. J Rehabil Med, 7, 565-571.

    無法下載圖示 校內:2024-04-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE