| 研究生: |
李佳俞 Li, Jia-Yu |
|---|---|
| 論文名稱: |
環境友善材料之脂肪族聚碳酸酯聚氨酯之研究 Study on environment-friendly materials of aliphatic polycarbonate-based polyurethane |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 脂肪族聚碳酸酯 、脂肪族聚氨酯 、分解性高分子 、環境友善材料 |
| 外文關鍵詞: | aliphatic polycarbonate, aliphatic polyurethane, biodegradable polymer, environment-friendly materials |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用高溫熔融聚合法合成出一系列的脂肪族聚草酸碳酸共聚酯(Aliphatic oxalic based polycarbonate, AOPC)與脂肪族聚乳酸碳酸共聚酯(Aliphatic lactic based polycarbonate, ALPC),再以溶液聚合法合成聚草酸碳酸酯聚氨酯(AOPC-PU)與聚乳酸碳酸酯聚氨酯(ALPC-PU)。經DSC 及TGA 分析結果顯示,ALPC-PU 結構中的聚
乳酸碳酸二丁酯與聚乳酸碳酸二己酯為結晶型軟鏈結,當聚乳酸在共聚酯結構中的比例提高,其結晶性與熱穩定降低;AOPC-PU 結構中的聚草酸酯在共聚酯中的比例提高時,同樣會使軟鏈結的結晶性與熱裂解溫度降低。經拉伸測試結果顯示,AOPC-PU 的草酸酯在軟鏈結中的含量增加,會使其剛性下降,延展性提升;另外,提高硬鏈結比例的聚氨酯,剛性高但延展性差。以DMA 分析結果也顯示隨著草酸酯在軟鏈中含量增加會使貯存模數(Storage modulus)下降,而提高硬鏈結比例之聚氨
酯的機械性質較耐高溫。由吸水性試驗可發現草酸酯在AOPC-PU 中的比例增加及硬鏈結的比例增加,吸水率也隨之提升;而水解速率隨軟鏈結中的草酸含量提高而增加。最後,由分子量百分比及重量百分比的下降以及SEM 觀察結果證明,真菌Aspergillus sp.與Fusarium sp.對AOPC-PU 與ALPC-PU 具有分解的效果。經由NMR結構分析顯示AOPC-PU 以聚草酸酯基與醯胺基斷裂為主;ALPC-PU 則以聚乳酸酯基斷裂為主,其次為醯胺基斷裂,且聚草酸酯與聚乳酸在共聚酯的比例提高利於分解。
In our study, first, we use high-temperature melt poly-condensation polymerization to prepare a series of aliphatic oxalic based polycarbonate and aliphatic lactic based polycarbonate, and then use solution polymerization to prepare oxalic based polycarbonate polyurethane and lactic based polycarbonate polyurethane. The thermal degradation temperature and crystallization behavior were characterized by TGA and DSC, as oxalic and lactic content increase, the crystallinity of copolymer and thermal stabilility will be decrease. Tensile test results show the decrease in stiffiness and the increase in ductility as oxalic content increase, In addition, polyurethanes with high ratio of hard segment show high rigidity but poor ductility. The DMA analysis results also show that as the content of oxalate in the soft segment increases, the storage modulus decreases, and the mechanical properties of the polyurethane with high ratio of hard segment are more stable at high temperature. In the water absorption test, it was found that the proportion of oxalate in AOPC-PU and the proportion of hard chain increased, the water absorption rate also increased; and the hydrolysis rate increased with the content of oxalic acid content in the soft segment. Finally, the decrease of molecular weight percentage and weight remaining percentage and SEM images showed that the fungi Aspergillus sp. and Fusarium sp. had decomposition effects on AOPC-PU and ALPC-PU. The NMR structure analysis showed that the bond cleavage of AOPC-PU was mainly composed of polyoxalate ester group and amide group ; the bond cleavage of ALPC-PU was mainly composed of polylactide ester group, the second is amide group. Moreover, the increase in the proportion of lactic acid and polyoxalate in the copolyester facilitates decomposition rate.
[1]. https://www.usatoday.com/story/news/nation-now/2018/06/27/ocean-beach-pollution-plastic-trash/738173002/.
[2]. Y. Tokiwa, B. Calabia, C. Ugwu, S. Aiba, Biodegradability of plastics, International journal of molecular sciences 10(9) (2009) 3722-3742.
[3]. http://news.bio-based.eu/new-market-data-the-positive-trend-for-the-bioplastics-industry-remains-stable/.
[4]. 曾芳, 刘忠珍, 许桂芝, 王荣辉, 欧俊, 蔬菜中不同形态草酸的提取测定, 食品科学 30(16) (2009) 216-219.
[5]. 冯秀丽, 王庆印, 刘绍英, 姚洁, 王公应, 钛酸钾催化 DMC 酯交换反应合成碳酸二异辛酯的研究, 2006.
[6]. 宋一兵, 罗爱国, 杜玉海, 方奕文, 甲醇直接气相氧化羰基化合成碳酸二甲酯, 2008.
[7]. M.A. Pacheco, C.L. Marshall, Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive, Energy & Fuels 11(1) (1997) 2-29.
[8]. https://baike.baidu.com/item/%E8%8D%89%E9%85%B8.
[9]. T. KAWAGUCHI, M. NAKANO, K. JUNI, S. INOUE, Y. YOSHIDA, Examination of biodegradability of poly (ethylene carbonate) and poly (propylene carbonate) in the peritoneal cavity in rats, Chemical and Pharmaceutical Bulletin 31(4) (1983) 1400-1403.
[10]. G. Rokicki, T. Kowalczyk, Synthesis of oligocarbonate diols and their characterization by MALDI-TOF spectrometry, Polymer 41(26) (2000) 9013-9031.
[11]. S. Gogolewski, Selected topics in biomedical polyurethanes. A review, Colloid and Polymer Science 267(9) (1989) 757-785.
[12]. M. Špírková, L. Machová, L. Kobera, J. Brus, R. Poręba, M. Serkis, A. Zhigunov, Multiscale approach to the morphology, structure, and segmental dynamics of complex degradable aliphatic polyurethanes, Journal of Applied Polymer Science 132(10) (2015).
[13]. R. Poręba, J. Kredatusová, J. Hodan, M. Serkis, M. Špírková, Thermal and mechanical properties of multiple‐component aliphatic degradable polyurethanes, Journal of Applied Polymer Science 132(16) (2015).
[14]. M. Ramirez, K.R. Miller, M.D. Soucek, Linking of oligoesters hydrolysis to polyurethane coatings, Journal of Applied Polymer Science 131(9) (2014).
[15]. P.A. Gunatillake, D.J. Martin, G.F. Meijs, S.J. McCarthy, R. Adhikari, Designing biostable polyurethane elastomers for biomedical implants, Australian journal of chemistry 56(6) (2003) 545-557.
[16]. M. Yang, Z. Zhang, C. Hahn, G. Laroche, M.W. King, R. Guidoin, Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials 48(1) (1999) 13-23.
[17]. F.H. Otey, R.P. Westhoff, C.R. Russell, Biodegradable films from starch and ethylene-acrylic acid copolymer, Industrial & Engineering Chemistry Product Research and Development 16(4) (1977) 305-308.
[18]. K.F. Tiefenbacher, Starch-based foamed materials—use and degradation properties, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 30(9-10) (1993) 727-731.
[19]. F.E. Okieimen, Graft copolymerization of vinyl monomers on cellulosic materials, Die Angewandte Makromolekulare Chemie 260(1) (1998) 5-10.
[20]. R.A. Wach, H. Mitomo, F. Yoshii, T. Kume, Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation‐induced crosslinking of CMC, Journal of Applied Polymer Science 81(12) (2001) 3030-3037.
[21]. C. Le Tien, M. Letendre, P. Ispas-Szabo, M. Mateescu, G. Delmas-Patterson, H.-L. Yu, M. Lacroix, Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose, Journal of agricultural and food chemistry 48(11) (2000) 5566-5575.
[22]. S. Iannace, L. Nicolais, S. Huang, Water sorption of glycol-modified cross-linked gelatin-based hydrogels, Journal of materials science 32(6) (1997) 1405-1408.
[23]. D. Bikiaris, J. Aburto, I. Alric, E. Borredon, M. Botev, C. Betchev, C. Panayiotou, Mechanical properties and biodegradability of LDPE blends with fatty‐acid esters of amylose and starch, Journal of applied polymer science 71(7) (1999) 1089-1100.
[24]. J. Yang, M. Wang, R. Otterbrite, Synthesis of novel copolyamides based on α-amino acids, J. Mater. Sci.—Pure Appl. Chem., A30 (1993) 503-515.
[25]. Y. Tokiwa, H. Fan, Y. Hiraguri, R. Kurane, M. Kitagawa, S. Shibatani, Y. Maekawa, Biodegradation of a sugar branched polymer consisting of sugar, fatty acid, and poly (vinyl alcohol), Macromolecules 33(5) (2000) 1636-1639.
[26]. R.P. Westhoff, F.H. Otey, C.L. Mehltretter, C.R. Russell, Starch-filled polyvinyl chloride plastics-preparation and evaluation, Industrial & Engineering Chemistry Product Research and Development 13(2) (1974) 123-125.
[27]. S. Iannace, G. Nocilla, L. Nicolais, Biocomposites based on sea algae fibers and biodegradable thermoplastic matrices, Journal of Applied Polymer Science 73(4) (1999) 583-592.
[28]. E. Chiellini, A. Corti, S. D'Antone, R. Solaro, Biodegradation of poly (vinyl alcohol) based materials, Progress in Polymer science 28(6) (2003) 963-1014.
[29]. W.-K. Lee, I. Losito, J.A. Gardella, W.L. Hicks, Synthesis and surface properties of fluorocarbon end-capped biodegradable polyesters, Macromolecules 34(9) (2001) 3000-3006.
[30]. S. Ponsart, J. Coudane, B. Saulnier, J.-L. Morgat, M. Vert, Biodegradation of [3H] poly (ε-caprolactone) in the presence of active sludge extracts, Biomacromolecules 2(2) (2001) 373-377.
[31]. A. Nakayama, N. Kawasaki, I. Arvanitoyannis, J. Iyoda, N. Yamamoto, Synthesis and degradability of a novel aliphatic polyester: poly(β-methyl-δ-valerolactone-co-L-lactide), Polymer 36(6) (1995) 1295-1301.
[32]. Coulembier, P. Degée, J.L. Hedrick, P. Dubois, From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly (β-malic acid) derivatives, Progress in Polymer Science 31(8) (2006) 723-747.
[33]. S. Li, M. Vert, Biodegradation of aliphatic polyesters, Degradable polymers, Springer2002, pp. 71-131.
[34]. D.S.G. Hu, H.J. Liu, Effects of soft segments and hydrolysis on the crystallization behavior of degradable poly (oxyethylene)/poly (l‐lactide) block copolymers, Macromolecular Chemistry and Physics 195(4) (1994) 1213-1223.
[35]. Z. Zhu, C. Xiong, L. Zhang, M. Yuan, X. Deng, Preparation of biodegradable polylactide-co-poly (ethylene glycol) copolymer by lactide reacted poly (ethylene glycol), European polymer journal 35(10) (1999) 1821-1828.
[36]. K.S. Kim, S. Chung, I.J. Chin, M.N. Kim, J.S. Yoon, Crystallization behavior of biodegradable amphiphilic poly (ethylene glycol)‐poly (L‐lactide) block copolymers, Journal of applied polymer science 72(3) (1999) 341-348.
[37]. X. Deng, J. Yao, M. Yuan, X. Li, C. Xiong, Polymerization of lactides and lactones, 12. Synthesis of poly [(glycolic acid)‐alt‐(L‐glutamic acid)] and poly {(lactic acid)‐co‐[(glycolic acid)‐alt‐(L‐glutamic acid)]}, Macromolecular Chemistry and Physics 201(17) (2000) 2371-2376.
[38]. M. Matsusaki, A. Kishida, N. Stainton, C.W. Ansell, M. Akashi, Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D, L‐lactic acid, Journal of applied polymer science 82(10) (2001) 2357-2364.
[39]. F. Tasaka, H. Miyazaki, Y. Ohya, T. Ouchi, synthesis of comb-type biodegradable polylactide through depsipeptide− lactide copolymer containing serine residues, Macromolecules 32(19) (1999) 6386-6389.
[40]. Z. Gan, T.F. Jim, M. Li, Z. Yuer, S. Wang, C. Wu, Enzymatic biodegradation of poly (ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications, Macromolecules 32(3) (1999) 590-594.
[41]. W. Den Dunnen, J. Schakenraad, G. Zondervan, A. Pennings, B. Van Der Lei, P. Robinson, A new PLLA/PCL copolymer for nerve regeneration, Journal of Materials Science: Materials in Medicine 4(5) (1993) 521-525.
[42]. N. Kawasaki, A. Nakayama, T. Higashi, Y. Maeda, N. Yamamoto, S.i. Aiba, Studies on Poly [acrylamide‐co‐(ε‐caprolactone)]: Synthesis, Characterization and Biodegradability, Macromolecular Chemistry and Physics 202(11) (2001) 2231-2238.
[43]. R. Gaymans, J. De Haan, Segmented copolymers with poly (ester amide) units of uniform length: synthesis, Polymer 34(20) (1993) 4360-4364.
[44]. M. Hakkarainen, S. Karlsson, A.-C. Albertsson, Rapid (bio) degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes, Polymer 41(7) (2000) 2331-2338.
[45]. E. Frazza, E. Schmitt, A new absorbable suture, Journal of biomedical materials research 5(2) (1971) 43-58.
[46]. E. Dawes, D. Ribbons, Some aspects of the endogenous metabolism of bacteria, Bacteriological Reviews 28(2) (1964) 126.
[47]. E. Fujimoto, T. Fujimaki, Effects of pendant methyl groups and lengths of methylene segments in main-chains on photodegradation of aliphatic polyesters, Polymer journal 31(8) (1999) 645.
[48]. S. Barratt, A. Ennos, M. Greenhalgh, G. Robson, P. Handley, Fungi are the predominant micro‐organisms responsible for degradation of soil‐buried polyester polyurethane over a range of soil water holding capacities, Journal of applied microbiology 95(1) (2003) 78-85.
[49]. G. Mathur, R. Prasad, Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil, Applied biochemistry and biotechnology 167(6) (2012) 1595-1602.
[50]. M. Abe, K. Kobayashi, N. Honma, K. Nakasaki, Microbial degradation of poly (butylene succinate) by Fusarium solani in soil environments, Polymer Degradation and Stability 95(2) (2010) 138-143.
[51]. R.T. Darby, A.M. Kaplan, Fungal susceptibility of polyurethanes, Appl. Environ. Microbiol. 16(6) (1968) 900-905.
[52]. J.R. Crabbe, J.R. Campbell, L. Thompson, S.L. Walz, W.W. Schultz, Biodegradation of a colloidal ester-based polyurethane by soil fungi, International Biodeterioration & Biodegradation 33(2) (1994) 103-113.
[53]. G.T. Howard, C. Ruiz, N.P. Hilliard, Growth of Pseudomonas chlororaphis on apolyester–polyurethane and the purification andcharacterization of a polyurethanase–esterase enzyme, International biodeterioration & biodegradation 43(1-2) (1999) 7-12.
[54]. R.V. Stern, G.T. Howard, The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase, FEMS Microbiology Letters 185(2) (2000) 163-168.
[55]. R. Pathirana, K. Seal, Studies on polyurethane deteriorating fungi, Int. Biodeterior. Biodegrad 21 (1985) 41-49.
[56]. L. Tatai, T.G. Moore, R. Adhikari, F. Malherbe, R. Jayasekara, I. Griffiths, P.A. Gunatillake, Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation, Biomaterials 28(36) (2007) 5407-5417.
校內:2024-12-31公開