| 研究生: |
林建宏 Lin, Chien-Hong |
|---|---|
| 論文名稱: |
無人直升機系統之滑動模式自主停懸的控制器設計與飛測驗證 Autonomous Hovering Controller Design Using Sliding Mode Control Theory and Its Flight Test Verification for Small-scaled Unmanned Helicopter System |
| 指導教授: |
蕭飛賓
Hsiao, Fei-Bin 詹劭勳 Jan, Shau-Shiun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 無人直升機 、自主停懸 、滑動模式控制 |
| 外文關鍵詞: | Unmanned Helicopter, Autonomous Hovering, Sliding Mode Control |
| 相關次數: | 點閱:148 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無人直升機有別於固定翼之無人飛機,不需要大型平整跑道提供起降,且由於直升機具備定點停懸之獨特能力,較一般固定翼無人飛機更適合空中偵查、 交通監控、以及環境監測等任務。本文的研究目的是在於運用滑動模式控制理論在無人直升機系統上之自主停懸的控制器設計與飛測驗證。
在過去幾十年間滑動模式控制理論已在強健控制領域上被廣泛的注意。這些良好的特性是建立在所謂的理想滑動模式上,而此滑動模式是藉由一種不連續的訊號控制所達成。然而,由於實際的物理限制,在瞬間無限的快速切換訊號控制是難以被實現且會導致非期望的控制結果。其中雙滑動模式控制器的設計理念是將分離成兩條比例積分微分型滑動面,可降低系統狀態的軌跡產生顫抖現象,並提升控制器的響應,而且,由於新的無顫抖型雙滑動模式控制器的簡單組成,應用在實務時也不會造成使用者實用的困擾。為了顯示雙滑動模式控制器可提高系統的性能,本文開發一個實驗的無人直升機系統平台去評估控制器的性能。在模擬數據分析得知雙滑動模式控制器不僅追蹤誤差比較小,而且誤差收斂速度比傳統的滑動模式控制器快,因此,電腦模擬和實際飛行測試也成功驗證了無人直升機系統的橫向和縱向控制器。最後本文也經由實際飛行測試資料結果顯示飛測與模擬結果是符合的。
Unmanned helicopter has been demanding for certain applications due to its unique flight capability. The unmanned helicopter can take off and land within a limited space and it can hover and cruise at a very low speed. The autonomous hovering is one of the most significant flight maneuvering conditions for an unmanned helicopter and offers an unmanned helicopter a wide variety of applications. Thus, an autonomous hovering controller design based on sliding mode control (SMC) theory and its flight test verification for a small-scaled unmanned helicopter system are presented in this study.
Owing to its unique properties, SMC theory has attracted a wide attention in the robust control field and these features are based on the existence of the so-called ideal sliding mode, which is achieved with the aid of discontinuous control. However, due to its physical limitations, the infinitely fast switching is difficult to be realized and may lead to undesirable control results. Thus, the twin sliding mode controller (TSMC) is designed with two separate proportional-integral-derivative boundary surfaces in order to reduce the chattering and improve the controllers' responses. Due to the simplicity of the TSMC structure, the proposed TSMC will cause no difficulty for users to realize it practically. In order to show how the TSMC may improve the system performance, this study develops an experimental unmanned helicopter system test-bed to assess the performance of the proposed controller. The simulation results of this work has validated that the tracking error of the TSMC is not only smaller but also converges quicker than the conventional SMC. Unlike the conventional SMC method, the proposed TSMC is capable of achieving the desired control qualities and the tracking performance. As shown in the flight test results, the 2-distance-root-mean-squared (2DRMS) position error is less than 5m. The flight test results are presented in the dissertation and they are found to be consistent with the simulation results.
REFERENCES
1.Shimo, Y., Development of power transmission line
inspection system by unmanned helicopter, CIGRE,. 2006.
p. 1-8.
2.Fabiani, P., Fuertes, V., Piquereau, A., Mampey, F. and
Teichteil, K.F., Autonomous flight and navigation of VTOL
UAVs: from autonomous to sot-of-sight flights, Aerospace
Science and Technology, 2007. 11. p. 183-192.
3.Cai, G., Chien, B. N. and Lee, T.H., An overview on
development of miniature unmanned rotorcraft system,
Electr. Electron. Eng., China, 2009. p. 1-14.
4. Gavrilets, V., Frazzoil, E., Metter, B., Piedmonte, M.
and Feron, E., Aggressive maneuvering of small autonomus
helicopters: Ahuman-cetered approach, The International
Journal of Robotics Research, 2009. p. 795-805.
5. Johnson, E. N. and Schrang, D. P., System integration
operation of a reach unmanned aerial vehicle, AIAA
Journal of Aerospace Computing, Information and
Communication, 2004. p. 1-36.
6. Adolf, F., Andert, F., Lorenz, S. Goormann, L. and
Dittrich, J., An unmanned helicopter for autonomous in
urban terrain., Advances in Robotics Research., 2009. p.
275-285.
7. Martions, I., Experiments in real time path planning for
a small unmanned helicopter using mixed integer linear
programming, Master Thesis, Department of Aeronautics
and Astronautics, Massachusetts Institute of
Technology., 2003. p. 1-57.
8. Lai, Y. C., Jan, S. S. and Hsiao, F. B. “Development of
a Low-Cost Attitude and Heading Reference System Using a
Three-Axis Rotating Platform”, Sensors, Vol. 10, No. 4,
pp. 2472-2491, 2010
9. Matsuoka, M., Chen, A., Singh, S. P. N., Ng, Y. N., and
Thrun, S., Autonomous helicopter tracking and
localization using a self-surveying camera array, The
International Journal of Robotics Research., 2007. 26
(2). P. 1-12.
10.Spinka, O., Kroupa, S. and Hanzalek, Z., Control system
for unmanned aerial vehicles, IEEE International
Conference on Intelligent Robots and Systems, 2007. p. 1-
6.
11.Spinka, O. and Hanzalek, Z., Low-cost reconfigurable
control system for small UAVs, IEEE Transactions on
Industrial electronics, 2009. p. 1-9.
12.Shin, J., Nonami, K., Fujiwara, D. and Hazawa, K., Model-
based optimal attitude and control of small-scale
unmanned helicopter, Robotica, 2005. 23. p. 51-63.
13.Hazawa, K., Shin, J., Fujiwara, D., Fernando, D. and
Nonami, K., Autonomous flight control of Hobby-class
small unmanned helicopter, IEEE International Conference
on Intelligent Robots and Systems, 2004. p. 754-760.
13.Bhandari, S. and Colgren, R., Six-DoF Dynamic Modeling
and Flight Testing of a UAV Helicopter, AIAA Modeling
and Simulation Technologies conference and Exhibit,
2005. p. 1-17.
14.Gonzaiez, A., Mahtani, R., Bejar, M. and Ollero, A.,
Control and stability analysis of autonomous helicopter,
IEEE Automation Congress, 2004. p. 399-404.
15.Sanchez, A. N., Becerra, H.M. and Velez, C. M.,
Combining fuzzy, PID and regulation control for an
autonomous mini-helicopter, Information Sciences, 2007.
p. 1999-2022.
16.Verdult, V., Lovera, M. and Verhaegen, M.,
Identification of linear parameter-varying state-space
models with application to helicopter rotor dynamics,
International Journal of Control, 2004. 77(13). p.1149-
1159.
17.Godfrey, A.R., Barker, H. A. and Tucker, A. J.,
Comparison of perturbation signals for linear system
identification in the frequency domain, IEE Proc.-
Control Theory Appl., 1999. 146(6). P.535-548.
18.Bogdanov, A. and Wan, E., SDRE control with nonlinear
feed-forward compensation for small unmanned helicopter,
American Institute of Aeronautics and Astronautics,
2003. p.1-10.
19.Godfrey, K.R., Tan, A. H. and Barker, H. A., A survey of
readily accessible perturbation signals for system
identification in the frequency domain, 2005. 13. p.1391-
1402.
20.Backmann E. D. and Borges, G. A., Nonlinear modeling,
identification and control for a simulated miniature
helicopter, IEEE Latin American Robotic Symposium, 2008.
p.53-58.
21.Mettler, B., Kanade, T. and Tischler, M. B., System
identification modeling of a model-scale helicopter,
Journal of the American Helicopter Society, 2007. p.1-25.
22.Mettler, B., Tischler, M. B. and Kanade, T., System
identification of small-size unmanned helicopter
dynamics, Journal of the American Helicopter Society,
1999. p.1-12.
23.Raptis, I. A., Valavanis, K. P. and Moreno, W. A.,
System identification and discrete nonlinear control of
miniature helicopters using back-stepping, Journal of
Intelligent Robot Systems, 2008. 55. p.223-243.
24.Zillinger, P. J. H., Model predicative control to
autonomous helicopter flight, Ph.D. thesis, Department
Mechanical Engineering, Technics Universities ., 2003.
p. 1-57.
25.Lorenz, S. and Chowdhary, G., Nonlinear model
identification for a miniature rotorcraft- preliminary
results, Journal of the American Helicopter Society,
2005. p.1-16.
26.Cunha, R. and Silvestre, C., SimModHeli: A dynamic
simulator for model-scale helicopter, Institute for
Systems and Robotics, 2003. p.1-6.
27.Gavrilets, V., Mettler, B. and Feron, E., Dynamic model
for a miniature aerobatic helicopter, Tech. Rep. 2003.
p.1-22.
28.Verdult, V., Nonlinear system identification: A state
space approach, Ph.D. thesis, University of Twente,
2002. p.1-279.
29.Loreaz, G. and Chowdhary, G., Non-linear model
identification for a miniature rotorcraft preliminary
results, Journal of the American Helicopter Society,
2005. p.1-14.
30.Budiyono, A., Design and development of autonomous
uninhabited air vehicles at ITB: Challenges and progress
status, Aerospace Indonesia Meeting, 2005. p. 1-10.
31.Hong, W. E., Lee, J. S. and Kang, S. J., Embedded real- time software architecture for unmanned autonomous
helicopters, Journal of Semiconductor and Science, 2005.
p. 243-248.
32.Buskey, G., Roberts, J., Corke, P. I. and Wyeth, G.,
Sensing and control for a small-size helicopter,
Springer Tracts in Advanced Robotics, 2003. p.476-485.
33.Corke, P. I., Sikka, P. and Roberts, J., Height
estimation for an autonomous helicopter, Tech. Rep.
2000. p.1-10.
34.Roberts, J. M., Corke, P. I. and Buskey, G., Low-cost
flight control system for small autonomous helicopter,
Robotics and Automations, 2002. p.71-76.
35.Taamallah, S., Reus, A. J. C. and Boer, J. F.,
Development of a rotorcraft Mini-UAV system, IEEE
Digital Avionics Systems Conference, 2005. p.1-14.
36.Corban, J. E., Flight evaluation of an adaptive velocity
command system for unmanned helicopters, American
Institute Aeronautic Astronautics, 2003. p.1-10.
37.Shim, D. H., Kim, H. J. and Sastry, S., Hierarchical
control system synthesis for rotorcraft-based unmanned
aerial vehicles, AIAA Guidance, navigation, and control
conference, 2000. p.1-9.
38.Sprague, K., Gavrilets, V., Dugail, B. and Feron, E.,
Design and applications of an avionics system for a
minnature acrobatic helicopter, IEEE Digital Avionics
System, 2001. p. 1-10.
39.Garcia, R.D., Valavanis, P. K. and Kandel, A.,
Autonomous Helicopter Navigation during a tail rotor
failure utilizing fuzzy logic, IEEE Control and
Automation, 2007. p.1-6.
40.Fuh, C. C., Variable Thickness boundary layers for
sliding mode control, Journal of Marine Science and
Technology, 2008. 16(4). P.288-294.
41.Hedrick, J. K. and Gopalswamy, S., Nonlinear flight
control design via sliding methods, American Institute
of Aeronautics and Astronautics, 1990. p.850-858.
42.Lee, H., Kim, E., Kang, H. J. and Park, M., A new
sliding mode control with fuzzy boundary layer, Fuzzy
set and Systems, 2001. 120. p.135-143.
43.Su, J. P. and Liang, C. Y., A new approach to the design
of a fuzzy sliding mode controller, Fuzzy Set and
Systems, 2003. 139. p.111-124.
44.Su, J. P. and Wang, C. C., Complementary sliding mode
control of non-linear systems, International Journal of
Control, 2002, 75. p.306-368.
45.Su, J. P. and Huang, C. T., Sigma adaptive fuzzy sliding
mode control of a calss of nonlinear system,
International Journal of Systems Science, 2000, 31(8).
p.949-959.
46.Chen, H. M., Su, J. P. and Renn, J. C., A novel sliding
mode control of an electrohydraulic, Institute of
Electronics, Information, and Communication Engineers,
2002. p.1928-1936.
47.Utkin, V. I., Variable structure systems with sliding
modes, IEEE Transactions on Automatic Control, 1977.
p.212-222.
48.Hess, R. A., Wells, S. R. and Vetter, T. K., MIMO
sliding mode control as an alternative to reconfigurable
flight control design, American Control Conference,
2002. p.3637-3643.
49.Hess, R. A. and Wells, S. R., Sliding mode control
applied to reconfigurable flight control design,
American Institute of Aeronautics and Astronautics,
2003. p.1-12.
50.Wells, S. R. and Hess, R. A., Multi-Input/Multi-Output
sliding mode control for a tailless fighter aircraft,
Journal of Guidance, Control, and Dynamics, 2003. p.463-
473.
51.Wells, S. R. and Hess, R. A., MIMO sliding mode control
for a tailless fighter aircraft, an alternative to
reconfigurable architectures, AIAA Guidance, Navigation,
and Control, 1998. p.1-48.
52.Lin, C. H., Tenn, H.K., Tseng, L. C. and Hsiao, F.B.,
Autonomous Hovering Control of an Unmanned Helicopter
Using Fuzzy Logic Control with Single Antenna GPS and
Rate Gyroscopes, Journal of Aeronautics Astronautics and
Aviation, Vol. 41, pp255-262, 2009.
53.Lin., C. H., Jan, S. S. and Hsiao, F.B., Autonomous
Hovering of an Experimental Unmanned Helicopter System
with Proportional-Integral Sliding Mode Control, ASCE’s
Journal of Aerospace Engineering .(Accepted, 2010/06/30)
54.Hsiao, F.B., Jan, S. S., Chian, C. H., Lin, C. H., Lai,
Y. C., Chen,C. C. and Yang, T.Y., System Integration,
Verifications and Applications of Military’s Unmanned
Aerial Vehicle System, National Defense Conference,
Taoyuan, Taiwan, November 2009.
55.Hsiao, F.B., Jan, S. S., Chian, C. H., Lin, C. H., Lai,
Y. C., Yang, T.Y. and Chen,C. C., The Development of
Advanced Technology, System Integration and their
Verifications and Applications for Military’s Unmanned
Aerial Vehicle System, In 18st National Defense
Conference, Taoyuan, Taiwan, November 2009.
56.Hsiao, F.B., Liu, Y. N., Lin, C. H. and Chen, C. C.,
Vision-based moving Target tracking and estimation for
unmanned helicopter, The Fifth Taiwan-Japan-Workshop on
Mechanical and Aerospace Engineering Le Midi Hotel of
Chi-Tou, Nantou, Taiwan October, 2009.
57.Hsiao, F. B., Lin, C. H., Ding, Y. R. and Liu, N. Y.,
Unmanned aerial helicopter autonomous flight research:
attitude stabilization robustness of hovering flight,
Taoyuan, Taiwan , 2008.
58.Tenn, H. K., Lin, C. H., Tseng, L. C., Cheng, Y. H. and
Hsiao, F. B, The Development of H-LING Unmanned
Helicopter System, CAFA Conference., Kaohsiung, Taiwan,
ROC, October, 2007.
59.Hsiao, F. B., Ding, Y. R., Tenn,Y. H., Tseng, L. C.,
Tenn, H. K. and Lin, C. H., 3-D path planning and visual
image servo control for unmanned helicopter, Taoyuan,
Taiwan , 2007.
60.Jan, S. S., Lin, C. H., Tseng , L.C., Hsiung, C. F.,
Tenn, H. K. and Lin, Y. H., High bandwidth controller
design for unmanned aerial helicopter, Taoyuan, Taiwan ,
2007.
61.Lin, C. H., Tseng , L.C., Tenn, H. K. and Hsiao, F. B.,
Attitude control of unmanned helicopter system by
composite sliding mode controller, CAFA Conference.,
Kaohsiung, Taiwan, 2007.
62.Hsiao, F. B., Juang, J. C., Jan, S. S., Hsiao, F. Y.,
Tenn, H. K., Lin, C. H., Tseng , L.C., Hsiung, C. F.,
Tseng , J. H. and Lu, T. C., Development of Unmanned
Helicopter Autonomous Hovering and Optical Target
Tracking System, Taoyuan, Taiwan , 2006.
63.Slotine, J. J.E. and Li, W., Applied nonlinear control
(Prentice-Hall, New Jersey, 1991)
64.Edwards, C. and Spurgeon, S.K., Sliding mode control:
theory and applications (Taylor and Francis Publishers,
1998)
65.Mettler, B., Identification modeling and characteristics
of miniature rotorcraft, (Kluwer Academic Publishers,
Boston, 2003)
66.Lee, C. S., Hsiao, F. B. and Jan, S. S., Design and
implementation of linear-quadratic-Gaussian stability
augmentation autopilot for UAV, The aeronautical
journal, 2009. 113(1143). p. 275-290.
67.Sira-Ramirez, H. and Zribi, M., Ahmad, S., Dynamical
sliding mode control approach for vertical flight
regulation in helicopters, IEE Proc., Control Theory
Appl., 1994. 194(1), p. 19-24.
68.Yang, C.D. and Kung, C.C., Nonlinear H∞ flight control
of general six-degree-of freedom motions, Journal of
Guidance, Control, and Dynamics., 2000. 23(2), p. 278-
288.
69.Baik, I. C., Kim, K. H. and Youn, M. J., Robust
nonlinear speed control of PM synchronous motor using
boundary layer integral sliding mode control technique,
IEEE Trans Automatic on Control Systems Technology,
2000. 8(1), p. 47-54.
70.Yahaya, M. S., Osman , J. H. S. and Ghani, M. R. A., A
class of proportional-integral sliding mode control with
application to active suspension system, Systems and
Control Letters., 51, 2004. p. 217–223.
71.Waslander, S. L., Hoffmann, G. M., Jang, J. S. and C. J.
Tomlin., Multi-agent quad-rotor test-bed control design:
integral sliding mode vs. reinforcement learning,
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005. p. 468-473.
72.Bouabdallah, S. and Siegwart, R., Back-stepping and
sliding mode techniques applied to an indoor micro quad-
rotor, IEEE International Conference on Robotics and
Automation, 2005. p. 2259-2264.
73.Chen, C.A., Chiang, H. K. and Lin, B.R., The Novel
Adaptive Sliding Mode Position Control Synchronous
Reluctance Motor Drive, Journal of the Chinese Society
of Mechanical Engineers, 2008. 29(3), p.241-247.
74.Hu, Q., Cao, J. and Zhang, Y., Robust back-stepping
sliding mode attitude tracking attitude tracking and
vibration damping of flexible spacecraft, Journal of
aerospace engineering, 2009. 22 (2), p. 139-152