簡易檢索 / 詳目顯示

研究生: 林建宏
Lin, Chien-Hong
論文名稱: 無人直升機系統之滑動模式自主停懸的控制器設計與飛測驗證
Autonomous Hovering Controller Design Using Sliding Mode Control Theory and Its Flight Test Verification for Small-scaled Unmanned Helicopter System
指導教授: 蕭飛賓
Hsiao, Fei-Bin
詹劭勳
Jan, Shau-Shiun
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 119
中文關鍵詞: 無人直升機自主停懸滑動模式控制
外文關鍵詞: Unmanned Helicopter, Autonomous Hovering, Sliding Mode Control
相關次數: 點閱:148下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人直升機有別於固定翼之無人飛機,不需要大型平整跑道提供起降,且由於直升機具備定點停懸之獨特能力,較一般固定翼無人飛機更適合空中偵查、 交通監控、以及環境監測等任務。本文的研究目的是在於運用滑動模式控制理論在無人直升機系統上之自主停懸的控制器設計與飛測驗證。
    在過去幾十年間滑動模式控制理論已在強健控制領域上被廣泛的注意。這些良好的特性是建立在所謂的理想滑動模式上,而此滑動模式是藉由一種不連續的訊號控制所達成。然而,由於實際的物理限制,在瞬間無限的快速切換訊號控制是難以被實現且會導致非期望的控制結果。其中雙滑動模式控制器的設計理念是將分離成兩條比例積分微分型滑動面,可降低系統狀態的軌跡產生顫抖現象,並提升控制器的響應,而且,由於新的無顫抖型雙滑動模式控制器的簡單組成,應用在實務時也不會造成使用者實用的困擾。為了顯示雙滑動模式控制器可提高系統的性能,本文開發一個實驗的無人直升機系統平台去評估控制器的性能。在模擬數據分析得知雙滑動模式控制器不僅追蹤誤差比較小,而且誤差收斂速度比傳統的滑動模式控制器快,因此,電腦模擬和實際飛行測試也成功驗證了無人直升機系統的橫向和縱向控制器。最後本文也經由實際飛行測試資料結果顯示飛測與模擬結果是符合的。

    Unmanned helicopter has been demanding for certain applications due to its unique flight capability. The unmanned helicopter can take off and land within a limited space and it can hover and cruise at a very low speed. The autonomous hovering is one of the most significant flight maneuvering conditions for an unmanned helicopter and offers an unmanned helicopter a wide variety of applications. Thus, an autonomous hovering controller design based on sliding mode control (SMC) theory and its flight test verification for a small-scaled unmanned helicopter system are presented in this study.
    Owing to its unique properties, SMC theory has attracted a wide attention in the robust control field and these features are based on the existence of the so-called ideal sliding mode, which is achieved with the aid of discontinuous control. However, due to its physical limitations, the infinitely fast switching is difficult to be realized and may lead to undesirable control results. Thus, the twin sliding mode controller (TSMC) is designed with two separate proportional-integral-derivative boundary surfaces in order to reduce the chattering and improve the controllers' responses. Due to the simplicity of the TSMC structure, the proposed TSMC will cause no difficulty for users to realize it practically. In order to show how the TSMC may improve the system performance, this study develops an experimental unmanned helicopter system test-bed to assess the performance of the proposed controller. The simulation results of this work has validated that the tracking error of the TSMC is not only smaller but also converges quicker than the conventional SMC. Unlike the conventional SMC method, the proposed TSMC is capable of achieving the desired control qualities and the tracking performance. As shown in the flight test results, the 2-distance-root-mean-squared (2DRMS) position error is less than 5m. The flight test results are presented in the dissertation and they are found to be consistent with the simulation results.

    CONTENTS CHINESE ABSTRACT i ABSTRACT ii EXTENDED CHINESE ABSTRACT iiv ACKNOWLEDGMENT xi LIST OF TABLES xv LIST OF FIGURES xvi NOMENCLATURE xix 1. Introduction 1 1.1 Unmanned Helicopter 2 1.2 Development of Unmanned Helicopter in RMRL 7 1.3 Motivation and Objectives 9 1.4 Dissertation Overview 10 2. Unmanned Helicopter Mathematical Model 11 2.1 Equations of Motion 11 2.2 Main Rotor Dynamics and Tail Rotor Dynamics 12 2.3 Overall Model 15 2.4 Interim Summary 16 3. Unmanned Helicopter System Architecture 17 3.1 Unmanned Helicopter System 17 3.2 Onboard Avionics System 19 3.2.1 System Architecture Description 19 3.2.2 Attitude Heading and Reference System 21 3.2.3 Global Positioning System 23 3.2.4 Servo Circuit Board Design 23 3.2.5 Power Distribution and Altimeter Sensor Board 24 3.2.6 Wireless Module and Panel Antenna 24 3.2.7 Onboard Computer and Coding Programs 25 3.3 Ground System 28 3.3.1 Ground Control Station 28 3.3.2 Video System 30 3.3.3 Weather System 31 3.4 Interim Summary 32 4. System Identification 33 4.1 Unmanned Helicopter System Identification 33 4.1.1 Building Parametric Model 33 4.1.2 Flight Data Collection and System Identification Rules 34 4.2 Levnberg-Marquardt Identification Method 35 4.3 Identification Results 36 4.4 Model Validation 40 4.5 Interim Summary 43 5. Controller Design for Autonomous Hovering 44 5.1 Sliding Mode Control 45 5.2 Integral Sliding Mode Control 52 5.3 Proportional-Integral Sliding Mode Control 55 5.4 Twin Sliding Mode Control 58 5.5 Examples of Numerical Simulations 61 5.5.1 Numerical Simulation Results of SMC Method 62 5.5.2 Numerical Simulation Results of ISMC Method 64 5.5.3 Numerical Simulation Results of PISMC Method 66 5.5.4 Numerical Simulation Results of TSMC Method 68 5.5.5 Comparison and Analysis of Tracking Performance and Responses 70 5.6 Simulation Results for Hovering Controller Design 73 5.6.1 SMC Design 73 5.6.2 PISMC Design 75 5.6.3 TSMC Design 77 5.6.4 Simulation Results and Discussions 78 5.7 Flight Test Results and Discussions 82 5.7.1 Comparison Between Control Signal Given by Pilot and Post-process of the Signal by Controller 84 5.7.2 SMC Results 85 5.7.3 PISMC Results 90 5.7.4 TSMC Results 96 5.7.5 Hovering at a Target Point with a Distant Initial Point 101 5.8 Controller Verification From Flight Test Restults 103 6. Conclusions 105 6.1 Summary of Contributions 106 6.2 Future Work 108 REFERENCES 109 VITA 117 PUBLICATION LIST 118

    REFERENCES
    1.Shimo, Y., Development of power transmission line
    inspection system by unmanned helicopter, CIGRE,. 2006.
    p. 1-8.
    2.Fabiani, P., Fuertes, V., Piquereau, A., Mampey, F. and
    Teichteil, K.F., Autonomous flight and navigation of VTOL
    UAVs: from autonomous to sot-of-sight flights, Aerospace
    Science and Technology, 2007. 11. p. 183-192.
    3.Cai, G., Chien, B. N. and Lee, T.H., An overview on
    development of miniature unmanned rotorcraft system,
    Electr. Electron. Eng., China, 2009. p. 1-14.
    4. Gavrilets, V., Frazzoil, E., Metter, B., Piedmonte, M.
    and Feron, E., Aggressive maneuvering of small autonomus
    helicopters: Ahuman-cetered approach, The International
    Journal of Robotics Research, 2009. p. 795-805.
    5. Johnson, E. N. and Schrang, D. P., System integration
    operation of a reach unmanned aerial vehicle, AIAA
    Journal of Aerospace Computing, Information and
    Communication, 2004. p. 1-36.
    6. Adolf, F., Andert, F., Lorenz, S. Goormann, L. and
    Dittrich, J., An unmanned helicopter for autonomous in
    urban terrain., Advances in Robotics Research., 2009. p.
    275-285.
    7. Martions, I., Experiments in real time path planning for
    a small unmanned helicopter using mixed integer linear
    programming, Master Thesis, Department of Aeronautics
    and Astronautics, Massachusetts Institute of
    Technology., 2003. p. 1-57.
    8. Lai, Y. C., Jan, S. S. and Hsiao, F. B. “Development of
    a Low-Cost Attitude and Heading Reference System Using a
    Three-Axis Rotating Platform”, Sensors, Vol. 10, No. 4,
    pp. 2472-2491, 2010
    9. Matsuoka, M., Chen, A., Singh, S. P. N., Ng, Y. N., and
    Thrun, S., Autonomous helicopter tracking and
    localization using a self-surveying camera array, The
    International Journal of Robotics Research., 2007. 26
    (2). P. 1-12.
    10.Spinka, O., Kroupa, S. and Hanzalek, Z., Control system
    for unmanned aerial vehicles, IEEE International
    Conference on Intelligent Robots and Systems, 2007. p. 1-
    6.
    11.Spinka, O. and Hanzalek, Z., Low-cost reconfigurable
    control system for small UAVs, IEEE Transactions on
    Industrial electronics, 2009. p. 1-9.
    12.Shin, J., Nonami, K., Fujiwara, D. and Hazawa, K., Model-
    based optimal attitude and control of small-scale
    unmanned helicopter, Robotica, 2005. 23. p. 51-63.
    13.Hazawa, K., Shin, J., Fujiwara, D., Fernando, D. and
    Nonami, K., Autonomous flight control of Hobby-class
    small unmanned helicopter, IEEE International Conference
    on Intelligent Robots and Systems, 2004. p. 754-760.
    13.Bhandari, S. and Colgren, R., Six-DoF Dynamic Modeling
    and Flight Testing of a UAV Helicopter, AIAA Modeling
    and Simulation Technologies conference and Exhibit,
    2005. p. 1-17.
    14.Gonzaiez, A., Mahtani, R., Bejar, M. and Ollero, A.,
    Control and stability analysis of autonomous helicopter,
    IEEE Automation Congress, 2004. p. 399-404.
    15.Sanchez, A. N., Becerra, H.M. and Velez, C. M.,
    Combining fuzzy, PID and regulation control for an
    autonomous mini-helicopter, Information Sciences, 2007.
    p. 1999-2022.
    16.Verdult, V., Lovera, M. and Verhaegen, M.,
    Identification of linear parameter-varying state-space
    models with application to helicopter rotor dynamics,
    International Journal of Control, 2004. 77(13). p.1149-
    1159.
    17.Godfrey, A.R., Barker, H. A. and Tucker, A. J.,
    Comparison of perturbation signals for linear system
    identification in the frequency domain, IEE Proc.-
    Control Theory Appl., 1999. 146(6). P.535-548.
    18.Bogdanov, A. and Wan, E., SDRE control with nonlinear
    feed-forward compensation for small unmanned helicopter,
    American Institute of Aeronautics and Astronautics,
    2003. p.1-10.
    19.Godfrey, K.R., Tan, A. H. and Barker, H. A., A survey of
    readily accessible perturbation signals for system
    identification in the frequency domain, 2005. 13. p.1391-
    1402.
    20.Backmann E. D. and Borges, G. A., Nonlinear modeling,
    identification and control for a simulated miniature
    helicopter, IEEE Latin American Robotic Symposium, 2008.
    p.53-58.
    21.Mettler, B., Kanade, T. and Tischler, M. B., System
    identification modeling of a model-scale helicopter,
    Journal of the American Helicopter Society, 2007. p.1-25.
    22.Mettler, B., Tischler, M. B. and Kanade, T., System
    identification of small-size unmanned helicopter
    dynamics, Journal of the American Helicopter Society,
    1999. p.1-12.
    23.Raptis, I. A., Valavanis, K. P. and Moreno, W. A.,
    System identification and discrete nonlinear control of
    miniature helicopters using back-stepping, Journal of
    Intelligent Robot Systems, 2008. 55. p.223-243.
    24.Zillinger, P. J. H., Model predicative control to
    autonomous helicopter flight, Ph.D. thesis, Department
    Mechanical Engineering, Technics Universities ., 2003.
    p. 1-57.
    25.Lorenz, S. and Chowdhary, G., Nonlinear model
    identification for a miniature rotorcraft- preliminary
    results, Journal of the American Helicopter Society,
    2005. p.1-16.
    26.Cunha, R. and Silvestre, C., SimModHeli: A dynamic
    simulator for model-scale helicopter, Institute for
    Systems and Robotics, 2003. p.1-6.
    27.Gavrilets, V., Mettler, B. and Feron, E., Dynamic model
    for a miniature aerobatic helicopter, Tech. Rep. 2003.
    p.1-22.
    28.Verdult, V., Nonlinear system identification: A state
    space approach, Ph.D. thesis, University of Twente,
    2002. p.1-279.
    29.Loreaz, G. and Chowdhary, G., Non-linear model
    identification for a miniature rotorcraft preliminary
    results, Journal of the American Helicopter Society,
    2005. p.1-14.
    30.Budiyono, A., Design and development of autonomous
    uninhabited air vehicles at ITB: Challenges and progress
    status, Aerospace Indonesia Meeting, 2005. p. 1-10.
    31.Hong, W. E., Lee, J. S. and Kang, S. J., Embedded real- time software architecture for unmanned autonomous
    helicopters, Journal of Semiconductor and Science, 2005.
    p. 243-248.
    32.Buskey, G., Roberts, J., Corke, P. I. and Wyeth, G.,
    Sensing and control for a small-size helicopter,
    Springer Tracts in Advanced Robotics, 2003. p.476-485.
    33.Corke, P. I., Sikka, P. and Roberts, J., Height
    estimation for an autonomous helicopter, Tech. Rep.
    2000. p.1-10.
    34.Roberts, J. M., Corke, P. I. and Buskey, G., Low-cost
    flight control system for small autonomous helicopter,
    Robotics and Automations, 2002. p.71-76.
    35.Taamallah, S., Reus, A. J. C. and Boer, J. F.,
    Development of a rotorcraft Mini-UAV system, IEEE
    Digital Avionics Systems Conference, 2005. p.1-14.
    36.Corban, J. E., Flight evaluation of an adaptive velocity
    command system for unmanned helicopters, American
    Institute Aeronautic Astronautics, 2003. p.1-10.
    37.Shim, D. H., Kim, H. J. and Sastry, S., Hierarchical
    control system synthesis for rotorcraft-based unmanned
    aerial vehicles, AIAA Guidance, navigation, and control
    conference, 2000. p.1-9.
    38.Sprague, K., Gavrilets, V., Dugail, B. and Feron, E.,
    Design and applications of an avionics system for a
    minnature acrobatic helicopter, IEEE Digital Avionics
    System, 2001. p. 1-10.
    39.Garcia, R.D., Valavanis, P. K. and Kandel, A.,
    Autonomous Helicopter Navigation during a tail rotor
    failure utilizing fuzzy logic, IEEE Control and
    Automation, 2007. p.1-6.
    40.Fuh, C. C., Variable Thickness boundary layers for
    sliding mode control, Journal of Marine Science and
    Technology, 2008. 16(4). P.288-294.
    41.Hedrick, J. K. and Gopalswamy, S., Nonlinear flight
    control design via sliding methods, American Institute
    of Aeronautics and Astronautics, 1990. p.850-858.
    42.Lee, H., Kim, E., Kang, H. J. and Park, M., A new
    sliding mode control with fuzzy boundary layer, Fuzzy
    set and Systems, 2001. 120. p.135-143.
    43.Su, J. P. and Liang, C. Y., A new approach to the design
    of a fuzzy sliding mode controller, Fuzzy Set and
    Systems, 2003. 139. p.111-124.
    44.Su, J. P. and Wang, C. C., Complementary sliding mode
    control of non-linear systems, International Journal of
    Control, 2002, 75. p.306-368.
    45.Su, J. P. and Huang, C. T., Sigma adaptive fuzzy sliding
    mode control of a calss of nonlinear system,
    International Journal of Systems Science, 2000, 31(8).
    p.949-959.
    46.Chen, H. M., Su, J. P. and Renn, J. C., A novel sliding
    mode control of an electrohydraulic, Institute of
    Electronics, Information, and Communication Engineers,
    2002. p.1928-1936.
    47.Utkin, V. I., Variable structure systems with sliding
    modes, IEEE Transactions on Automatic Control, 1977.
    p.212-222.
    48.Hess, R. A., Wells, S. R. and Vetter, T. K., MIMO
    sliding mode control as an alternative to reconfigurable
    flight control design, American Control Conference,
    2002. p.3637-3643.
    49.Hess, R. A. and Wells, S. R., Sliding mode control
    applied to reconfigurable flight control design,
    American Institute of Aeronautics and Astronautics,
    2003. p.1-12.
    50.Wells, S. R. and Hess, R. A., Multi-Input/Multi-Output
    sliding mode control for a tailless fighter aircraft,
    Journal of Guidance, Control, and Dynamics, 2003. p.463-
    473.
    51.Wells, S. R. and Hess, R. A., MIMO sliding mode control
    for a tailless fighter aircraft, an alternative to
    reconfigurable architectures, AIAA Guidance, Navigation,
    and Control, 1998. p.1-48.
    52.Lin, C. H., Tenn, H.K., Tseng, L. C. and Hsiao, F.B.,
    Autonomous Hovering Control of an Unmanned Helicopter
    Using Fuzzy Logic Control with Single Antenna GPS and
    Rate Gyroscopes, Journal of Aeronautics Astronautics and
    Aviation, Vol. 41, pp255-262, 2009.
    53.Lin., C. H., Jan, S. S. and Hsiao, F.B., Autonomous
    Hovering of an Experimental Unmanned Helicopter System
    with Proportional-Integral Sliding Mode Control, ASCE’s
    Journal of Aerospace Engineering .(Accepted, 2010/06/30)
    54.Hsiao, F.B., Jan, S. S., Chian, C. H., Lin, C. H., Lai,
    Y. C., Chen,C. C. and Yang, T.Y., System Integration,
    Verifications and Applications of Military’s Unmanned
    Aerial Vehicle System, National Defense Conference,
    Taoyuan, Taiwan, November 2009.
    55.Hsiao, F.B., Jan, S. S., Chian, C. H., Lin, C. H., Lai,
    Y. C., Yang, T.Y. and Chen,C. C., The Development of
    Advanced Technology, System Integration and their
    Verifications and Applications for Military’s Unmanned
    Aerial Vehicle System, In 18st National Defense
    Conference, Taoyuan, Taiwan, November 2009.
    56.Hsiao, F.B., Liu, Y. N., Lin, C. H. and Chen, C. C.,
    Vision-based moving Target tracking and estimation for
    unmanned helicopter, The Fifth Taiwan-Japan-Workshop on
    Mechanical and Aerospace Engineering Le Midi Hotel of
    Chi-Tou, Nantou, Taiwan October, 2009.
    57.Hsiao, F. B., Lin, C. H., Ding, Y. R. and Liu, N. Y.,
    Unmanned aerial helicopter autonomous flight research:
    attitude stabilization robustness of hovering flight,
    Taoyuan, Taiwan , 2008.
    58.Tenn, H. K., Lin, C. H., Tseng, L. C., Cheng, Y. H. and
    Hsiao, F. B, The Development of H-LING Unmanned
    Helicopter System, CAFA Conference., Kaohsiung, Taiwan,
    ROC, October, 2007.
    59.Hsiao, F. B., Ding, Y. R., Tenn,Y. H., Tseng, L. C.,
    Tenn, H. K. and Lin, C. H., 3-D path planning and visual
    image servo control for unmanned helicopter, Taoyuan,
    Taiwan , 2007.
    60.Jan, S. S., Lin, C. H., Tseng , L.C., Hsiung, C. F.,
    Tenn, H. K. and Lin, Y. H., High bandwidth controller
    design for unmanned aerial helicopter, Taoyuan, Taiwan ,
    2007.
    61.Lin, C. H., Tseng , L.C., Tenn, H. K. and Hsiao, F. B.,
    Attitude control of unmanned helicopter system by
    composite sliding mode controller, CAFA Conference.,
    Kaohsiung, Taiwan, 2007.
    62.Hsiao, F. B., Juang, J. C., Jan, S. S., Hsiao, F. Y.,
    Tenn, H. K., Lin, C. H., Tseng , L.C., Hsiung, C. F.,
    Tseng , J. H. and Lu, T. C., Development of Unmanned
    Helicopter Autonomous Hovering and Optical Target
    Tracking System, Taoyuan, Taiwan , 2006.
    63.Slotine, J. J.E. and Li, W., Applied nonlinear control
    (Prentice-Hall, New Jersey, 1991)
    64.Edwards, C. and Spurgeon, S.K., Sliding mode control:
    theory and applications (Taylor and Francis Publishers,
    1998)
    65.Mettler, B., Identification modeling and characteristics
    of miniature rotorcraft, (Kluwer Academic Publishers,
    Boston, 2003)
    66.Lee, C. S., Hsiao, F. B. and Jan, S. S., Design and
    implementation of linear-quadratic-Gaussian stability
    augmentation autopilot for UAV, The aeronautical
    journal, 2009. 113(1143). p. 275-290.
    67.Sira-Ramirez, H. and Zribi, M., Ahmad, S., Dynamical
    sliding mode control approach for vertical flight
    regulation in helicopters, IEE Proc., Control Theory
    Appl., 1994. 194(1), p. 19-24.
    68.Yang, C.D. and Kung, C.C., Nonlinear H∞ flight control
    of general six-degree-of freedom motions, Journal of
    Guidance, Control, and Dynamics., 2000. 23(2), p. 278-
    288.
    69.Baik, I. C., Kim, K. H. and Youn, M. J., Robust
    nonlinear speed control of PM synchronous motor using
    boundary layer integral sliding mode control technique,
    IEEE Trans Automatic on Control Systems Technology,
    2000. 8(1), p. 47-54.
    70.Yahaya, M. S., Osman , J. H. S. and Ghani, M. R. A., A
    class of proportional-integral sliding mode control with
    application to active suspension system, Systems and
    Control Letters., 51, 2004. p. 217–223.
    71.Waslander, S. L., Hoffmann, G. M., Jang, J. S. and C. J.
    Tomlin., Multi-agent quad-rotor test-bed control design:
    integral sliding mode vs. reinforcement learning,
    IEEE/RSJ International Conference on Intelligent Robots
    and Systems, 2005. p. 468-473.
    72.Bouabdallah, S. and Siegwart, R., Back-stepping and
    sliding mode techniques applied to an indoor micro quad-
    rotor, IEEE International Conference on Robotics and
    Automation, 2005. p. 2259-2264.
    73.Chen, C.A., Chiang, H. K. and Lin, B.R., The Novel
    Adaptive Sliding Mode Position Control Synchronous
    Reluctance Motor Drive, Journal of the Chinese Society
    of Mechanical Engineers, 2008. 29(3), p.241-247.
    74.Hu, Q., Cao, J. and Zhang, Y., Robust back-stepping
    sliding mode attitude tracking attitude tracking and
    vibration damping of flexible spacecraft, Journal of
    aerospace engineering, 2009. 22 (2), p. 139-152

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE