簡易檢索 / 詳目顯示

研究生: 許中豪
Hsu, Chung-Hao
論文名稱: 氧化亞氮分解效應對氧化亞氮/乙烯反置擴散火焰中煙粒生成影響
Effect of nitrous oxide decomposition on soot formation of nitrous oxide/ethylene inverse diffusion flames
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 123
中文關鍵詞: 氧化亞氮乙烯雷射誘發白熾光雙色測溫法煙粒生成
外文關鍵詞: nitrous oxide, ethylene, LII, two-color pyrometry, soot formation
相關次數: 點閱:72下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以實驗的方式討論氧化亞氮(N2O)的分解反應對於乙烯(C2H4)反置擴散火焰中煙粒生成之影響。N2O分解效應包含著類似富氧空氣條件的富氧效應以及伴隨熱釋放的熱效應。相較於空氣條件下的乙烯擴散火焰,N2O / C2H4擴散火焰促使更多的煙粒(soot)生成。為了探討N2O的分解反應對於煙粒生成的影響,實驗採取不同的氧化劑條件,分別為N2O條件、33% O2 +67% N2(氧化亞氮完全分解的條件)富氧條件、21% O2 +79% N2空氣條件。在本實驗系統中,使用軸對稱三環噴流燃燒器產生出不同的流速比(R)的反置擴散火焰,操作區間為R = 0至6。實驗量測系統分別使用雷射誘導白熾光(Laser-Induced Incandescence,LII)以及雙色光測高溫法(Two-Color Pyrometry)對煙粒濃度以及煙粒溫度進行測量。結果顯示,N2O分解的作用促進了N2O / C2H4火焰中的煙塵負載。 與33%O2 + 67%N2的情況相比,隨著R的增加,N2O分解反應對總體煙粒形成的熱效應增強。 最大增強達到40%。 此外,在N2O / C2H4擴散火焰上游,由於熱效應,測得的煙粒溫度有顯著的增加。 但是,通過比較33%O2 + 67%N2富氧條件和空氣條件的結果,可以看出,隨著R值的增加,富氧效應對總體煙粒形成的影響從10%逐漸提升到60%。 通過沿火焰高度積分的煙粒濃度數值顯示,煙粒的形成速率和氧化速率可能會由於N2O分解效應的參與而重新平衡。

    The effect of nitrous oxide (N2O) decomposition on soot formation of nitrous oxide/ethylene inverse diffusion flame had been investigated experimentally. The N2O decomposition is regarded as the combination of the oxy-enrichment effect and exothermic thermal effect. Burning ethylene with nitrous oxide is prone to deteriorate soot emission compared to the ethylene/air condition. In order to scrutinize the effect of N2O decomposition on the soot formation mechanism, the artifices of two manipulating oxidizer conditions had been implemented, that is, a fully N2O-decomposing condition of 33% O2 +67% N2 and air condition of 21% O2 +79% N2, respectively. A triple-port burner was employed to generate inverse diffusion flames with a variation of oxidizer injections (from R=0 to 6). Soot concentration was qualitatively measured by Laser-Induced Incandescence (LII) measurement technique, while soot temperature was detected by the Two-Color Pyrometry measurement technique. Results demonstrated that the effect of N2O decomposition promotes soot loading in N2O/C2H4 flames. Compared to the case of 33% O2 +67% N2, the impact factor of the thermal effect of N2O decomposition on soot formation increases with an increase of R ratios. The maximum impact factor of the thermal effect reaches 40%. Furthermore, the measured soot temperatures significantly increase by the thermal effect in the upstream of N2O/C2H4 flames. However, comparing the results of 33% O2 +67% N2 and air conditions, it appears that the effect of oxy-enrichment on the soot formation gradually amplifies from 10% to 60% depending upon the increasing R ratios. By integrating the soot concentration along the flame heights, it reveals that soot formation rate and soot oxidation rate may rebalance by the presence of N2O decomposition effect.

    CONTENTS 摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF TABLES VIII LIST OF FIGURES IX NOMENCLATURE XII CHAPTER 1 1 INTRODUCTION 1 1-1 Background 1 1-2 Nitrous Oxide (N2O) 2 1-2-1 Decomposition of N2O 4 1-3 N2O/Hydrocarbon Combustion 6 1-4 Soot Emission 12 1-4-1 Pathways of Soot 12 1-4-2 Effects on Soot Formation: Parametric studies 17 1-5 Co-Flow Diffusion Flames 22 1-5-1 Co-Axial Triple Port Burner 24 1-6 Motivation and Objective 25 CHAPTER 2 28 EXPERIMENTAL APPARATUS 28 2-1 Burner and Gas Supplied 28 2-2 Laser Control 33 2-3 CCD Camera 38 2-4 Image intensifier 39 CHAPTER 3 41 MEASUREMENT METHOD 42 3-1 Laser-Induced Incandescence (LII) 42 3-1-1 Optical Setup 42 3-1-2 Spectral Detection 46 3-1-3 Laser Fluence Dependence 47 3-1-4 Gated Delay and Timing 52 3-2 Two-Color Pyrometry (TCP) 57 3-2-1 Optical Setup 57 3-2-2 Soot temperature 58 3-2-3 Selection of Spectral Detection 62 3-2-4 Calibration 63 CHAPTER 4 72 FLAME APPEARANCE 73 4-1 Flame Appearance 73 4-2 Effect of N2O Decomposition on Soot 76 4-3 Flame Luminosity 79 CHAPTER 5 85 SOOT VOLUME FRACTION AND SOOT TEMPERATURE 85 5-1 Soot Volume Fraction 85 5-2 Soot Evolution 88 5-3 Soot Temperature 94 CHAPTER 6 100 CONCLUSION 100 REFERENCE 102 APPENDIX 109 A1. MATLAB codes for Abel transformation 109 A2. MATLAB codes for image average 113 A3. MATLAB codes for calculated the soot-LII 114 A4-1 Soot-LII images 114 A4-2 Volume-integrated 115 A4-3 Radial-integrated 115 A4-4 Soot-LII evolution rate 115 A4-5 The radial-distributions of soot-LII 115 A4 MATLAB codes for TCP 117 A4-1 Step1: Initiate the image loading 117 A4-2 Step2: Load the calibration images 117 A4-3 Step3: Specify the region to be analyzed 118 A4-4 Step4: Averaging the indices within the region 120 A4-5 Step5: Create calibration chart 121 A4-6 Step6: Flame temperature calculation 122

    [1] Brown M. SpaceX Starship could offer earth-wide package deliveries in under an hour. INVERSE; 2020.
    [2] Russi M. A survey of monopropellant hydrazine thruster technology. 9th Propulsion Conference: American Institute of Aeronautics and Astronautics; 1973.
    [3] Masse RK, Sackheim RL. Green Propulsion Advancement - Challenging the Maturity of Monopropellant Hydrazine. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference: American Institute of Aeronautics and Astronautics; 2013.
    [4] Gohardani AS, Stanojev J, Demairé A, Anflo K, Persson M, Wingborg N, et al. Green space propulsion: Opportunities and prospects. Progress in Aerospace Sciences. 2014;71:128-49.
    [5] Sackheim RL, Masse RK. Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine. Journal of Propulsion and Power. 2014;30:265-76.
    [6] Božić O, Porrmann D, Lancelle D, May S. Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide. CEAS Space Journal. 2016;8:77-88.
    [7] Gotzig U. Development and Test of a 3D printed Hydrogen Peroxide Flight Control Thruster. 51st AIAA/SAE/ASEE Joint Propulsion Conference: American Institute of Aeronautics and Astronautics; 2015.
    [8] Katsumi T, Inoue T, Nakatsuka J, Hasegawa K, Kobayashi K, Sawai S, et al. HAN-based green propellant, application, and its combustion mechanism. Combustion, Explosion, and Shock Waves. 2012;48:536-43.
    [9] Berg SP, Rovey JL. Assessment of Imidazole-Based Ionic Liquids as Dual-Mode Spacecraft Propellants. Journal of Propulsion and Power. 2013;29:339-51.
    [10] Shamshina JL, Smiglak M, Drab DM, Parker TG, Dykes JHWH, Di Salvo R, et al. Catalytic ignition of ionic liquids for propellant applications. Chemical Communications. 2010;46:8965-7.
    [11] Werling L, Jooß Y, Wenzel M, Ciezki H, Schlechtriem S. A PREMIXED GREEN PROPELLANT CONSISTING OF N2O AND C2H4: EXPERIMENTAL ANALYSIS OF QUENCHING DIAMETERS TO DESIGN FLASHBACK ARRESTERS. 2018;17:241-62.
    [12] Werling LK, Müller S, Hauk A, Ciezki HK, Schlechtriem S. Pressure Drop Measurement of Porous Materials: Flashback Arrestors for a N2O/C2H4 Premixed Green Propellant. 52nd AIAA/SAE/ASEE Joint Propulsion Conference: American Institute of Aeronautics and Astronautics; 2016.
    [13] Yang M, Yang Y, Liao C, Tang C, Zhou C-W, Huang Z. The auto-ignition boundary of ethylene/nitrous oxide as a promising monopropellant. Combustion and Flame. 2020;221:64-73.
    [14] Werling LK, Hassler M, Lauck F, Ciezki HK, Schlechtriem S. Experimental Performance Analysis (c* & c* Efficiency) of a Premixed Green Propellant consisting of N2O and C2H4. 53rd AIAA/SAE/ASEE Joint Propulsion Conference: American Institute of Aeronautics and Astronautics; 2017.
    [15] Powell O, Miller J, Dreyer C, Papas P. Characterization of Hydrocarbon/Nitrous Oxide Propellant Combinations. 46th AIAA Aerospace Sciences Meeting and Exhibit: American Institute of Aeronautics and Astronautics; 2008.
    [16] Ross M, Vedda J. The Policy and Science of Rocket Emissions. 2018.
    [17] Karabeyoglu A, Dyer J, Stevens J, Cantwell B. Modeling of N2O Decomposition Events. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: American Institute of Aeronautics and Astronautics; 2008.
    [18] Hennemann L, Andrade JCd, Costa FdS. Experimental Investigation of a Monopropellant Thruster Using Nitrous Oxide. Journal of Aerospace Technology and Management. 2014;6:363-72.
    [19] Dabora EK. Effect of NO2 on the ignition delay of CH4-air mixtures. Combustion and Flame. 1975;24:181-4.
    [20] Balakhnine VP, Vandooren J, Van Tiggelen PJ. Reaction mechanism and rate constants in lean hydrogen-nitrous oxide flames. Combustion and Flame. 1977;28:165-73.
    [21] Sausa RC, Anderson WR, Dayton DC, Faust CM, Howard SL. Detailed structure study of a low pressure, stoichiometric H2/N2O/Ar flame. Combustion and Flame. 1993;94:407-25.
    [22] Chen C-H, Li Y-H. Role of N2O and equivalence ratio on NOx formation of methane/nitrous oxide premixed flames. Combustion and Flame. 2021;223:42-54.
    [23] Vanderhoff JA, Bunte SW, Kotlar AJ, Beyer RA. Temperature and concentration profiles in hydrogen/nitrous oxide flames. Combustion and Flame. 1986;65:45-51.
    [24] Smith GP, Park C, Luque J. A note on chemiluminescence in low-pressure hydrogen and methane–nitrous oxide flames. Combustion and Flame. 2005;140:385-9.
    [25] Linteris GT, Rumminger MD, Babushok VI. Premixed carbon monoxide–nitrous oxide–hydrogen flames: measured and calculated burning velocities with and without Fe(CO)5‡‡Official contribution of the National Institute of Standards and Technology, not subject to copyright in the United States. Combustion and Flame. 2000;122:58-75.
    [26] Wang W, Zhang H. Laminar burning velocities of C2H4/N2O flames: Experimental study and its chemical kinetics mechanism. Combustion and Flame. 2019;202:362-75.
    [27] Newman-Lehman T, Grana R, Seshadri K, Williams F. The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames. Proceedings of the Combustion Institute. 2013;34:2147-53.
    [28] Wang H, Laskin A. A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures. Progress Report for an AFOSR New World Vista Program. 1998.
    [29] Group CR. The San Diego Mechanism: Chemical Kinetic Mechanisms for Combustion Applications. Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, CA.
    [30] Abián M, Peribáñez E, Millera Á, Bilbao R, Alzueta MU. Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot. Combustion and Flame. 2014;161:280-7.
    [31] Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L. International Energy Outlook 2016 With Projections to 2040. United States2016.
    [32] Reitz R. Directions in internal combustion engine research. Combustion and Flame. 2013;160:1-8.
    [33] Wang H. Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute. 2011;33:41-67.
    [34] Karatas A, Gülder Ö. Soot formation in high pressure laminar diffusion flames. Progress in Energy and Combustion Science. 2012;38:818–45.
    [35] Bonne U, Homann KH, Wagner HG. Carbon formation in premixed flames. Symposium (International) on Combustion. 1965;10:503-12.
    [36] Calcote HF. Mechanisms of soot nucleation in flames—A critical review. Combustion and Flame. 1981;42:215-42.
    [37] Stein SE, Fahr A. High-temperature stabilities of hydrocarbons. The Journal of Physical Chemistry. 1985;89:3714-25.
    [38] Graham SC, Homer JB, Rosenfeld JLJ. The Formation and Coagulation of Soot Aerosols Generated by the Pyrolysis of Aromatic Hydrocarbons. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences. 1975;344:259-85.
    [39] Miller JA, Melius CF. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combustion and Flame. 1992;91:21-39.
    [40] Miller JA, Klippenstein SJ. The Recombination of Propargyl Radicals and Other Reactions on a C6H6 Potential. The Journal of Physical Chemistry A. 2003;107:7783-99.
    [41] Shukla B, Susa A, Miyoshi A, Koshi M. Role of Phenyl Radicals in the Growth of Polycyclic Aromatic Hydrocarbons. The Journal of Physical Chemistry A. 2008;112:2362-9.
    [42] Shukla B, Miyoshi A, Koshi M. Role of Methyl Radicals in the Growth of PAHs. Journal of the American Society for Mass Spectrometry. 2010;21:534-44.
    [43] Keller A, Kovacs R, Homann KH. Large molecules, ions, radicals and small soot particles in fuel-rich hydrocarbon flames. Part IV. Large polycyclic aromatic hydrocarbons and their radicals in a fuel-rich benzene–oxygen flame. Physical Chemistry Chemical Physics. 2000;2:1667-75.
    [44] Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion. 1991;23:1559-66.
    [45] Violi A, Kubota A, Truong TN, Pitz WJ, Westbrook CK, Sarofim AF. A fully integrated kinetic monte carlo/molecular dynamics approach for the simulation of soot precursor growth. Proceedings of the Combustion Institute. 2002;29:2343-9.
    [46] Johansson KO, Head-Gordon MP, Schrader PE, Wilson KR, Michelsen HA. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science. 2018;361:997.
    [47] Frenklach M. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics. 2002;4:2028-37.
    [48] Kim CH, El-Leathy AM, Xu F, Faeth GM. Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1–1.0 atm. Combustion and Flame. 2004;136:191-207.
    [49] Mikofski MA, Williams TC, Shaddix CR, Fernandez-Pello AC, Blevins LG. Structure of laminar sooting inverse diffusion flames. Combustion and Flame. 2007;149:463-78.
    [50] Xu L, Yan F, Dai W, Zhou M, Chung SH, Wang Y. Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels. Combustion and Flame. 2020;216:24-8.
    [51] Gleason K, Carbone F, Gomez A. Pressure and temperature dependence of soot in highly controlled counterflow ethylene diffusion flames. Proceedings of the Combustion Institute. 2019;37:2057-64.
    [52] Xu L, Yan F, Wang Y, Chung SH. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame. 2020;213:14-25.
    [53] Mei J, You X, Law C. Effects of CO2 on soot formation in ethylene pyrolysis. Combustion and Flame. 2020;215:28-35.
    [54] Pandey P, Pundir BP, Panigrahi PK. Hydrogen addition to acetylene–air laminar diffusion flames: Studies on soot formation under different flow arrangements. Combustion and Flame. 2007;148:249-62.
    [55] Sun Z, Dally B, Nathan G, Alwahabi Z. Effects of hydrogen and nitrogen on soot volume fraction, primary particle diameter and temperature in laminar ethylene/air diffusion flames. Combustion and Flame. 2017;175:270-82.
    [56] Wang Y, Chung SH. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science. 2019;74:152-238.
    [57] Santamaria A, Yang N, Eddings E, Mondragon F. Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combustion and Flame. 2010;157:33-42.
    [58] Katta VR, Blevins LG, Roquemore WM. Dynamics of an inverse diffusion flame and its role in polycyclic-aromatic-hydrocarbon and soot formation. Combustion and Flame. 2005;142:33-51.
    [59] Sidebotham GW, Glassman I. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combustion and Flame. 1992;90:269-83.
    [60] Oh KC, Lee UD, Shin HD, Lee EJ. The evolution of incipient soot particles in an inverse diffusion flame of ethene. Combustion and Flame. 2005;140:249-54.
    [61] Santamaría A, Eddings EG, Mondragón F. Effect of ethanol on the chemical structure of the soot extractable material of an ethylene inverse diffusion flame. Combustion and Flame. 2007;151:235-44.
    [62] Ko Y-C, Hou S-S, Lin T-H. Laminar diffusion flames in a multiport burner. Combustion Science and Technology - COMBUST SCI TECHNOL. 2005;177:1463-84.
    [63] Liu F, Smallwood G. Control of the structure and sooting characteristics of a coflow laminar methane/air diffusion flame using a central air jet: An experimental and numerical study. Proceedings of the Combustion Institute. 2011;33:1063-70.
    [64] Yamamoto K, Takemoto M. Measurement of PAH and soot of diffusion flames in a triple port burner. Fuel Processing Technology. 2013;107:99-106.
    [65] Chen CH, Huang CW, Li YH. Flame modes and combustion characteristics of a triple port burner. 11th Asia-Pacific Conference on Combustion, ASPACC 20172017.
    [66] Kent JH. A quantitative relationship between soot yield and smoke point measurements. Combustion and Flame. 1986;63:349-58.
    [67] Michelsen HA, Schulz C, Smallwood GJ, Will S. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Progress in Energy and Combustion Science. 2015;51:2-48.
    [68] Quay B, Lee TW, Ni T, Santoro RJ. Spatially resolved measurements of soot volume fraction using laser-induced incandescence. Combustion and Flame. 1994;97:384-92.
    [69] Axelsson B, Collin R, Bengtsson PE. Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Applied Physics B. 2001;72:367-72.
    [70] Leider HR, Krikorian OH, Young DA. Thermodynamic properties of carbon up to the critical point. Carbon. 1973;11:555-63.
    [71] Lahaye J, Prado G. Morphology and Internal Structure of Soot and Carbon Blacks. In: Siegla DC, Smith GW, editors. Particulate Carbon: Formation During Combustion. Boston, MA: Springer US; 1981. p. 33-55.
    [72] Kaplan CR, Shaddix CR, Smyth KC. Computations of enhanced soot production in time-varying CH4/air diffusion flames. Combustion and Flame. 1996;106:392-405.
    [73] Melton LA. Soot diagnostics based on laser heating. Appl Opt. 1984;23:2201-8.
    [74] KoHse H. Applied Combustion Diagnostics. 2002.
    [75] Shaddix CR, Smyth KC. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combustion and Flame. 1996;107:418-52.
    [76] Michelsen HA, Schrader PE, Goulay F. Wavelength and temperature dependences of the absorption and scattering cross sections of soot. Carbon. 2010;48:2175-91.
    [77] Roth P, Filippov AV. In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission. Journal of Aerosol Science. 1996;27:95-104.
    [78] Olofsson N-E, Johnsson J, Bladh H, Bengtsson P-E. Soot sublimation studies in a premixed flat flame using laser-induced incandescence (LII) and elastic light scattering (ELS). Applied Physics B. 2013;112:333-42.
    [79] Shaddix CR, Harrington JE, Smyth KC. Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combustion and Flame. 1994;99:723-32.
    [80] Vander Wal RL, Weiland KJ. Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction. Applied Physics B. 1994;59:445-52.
    [81] Dasch CJ. Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame. Appl Opt. 1984;23:2209-15.
    [82] Bengtsson PE, Aldén M. Soot-visualization strategies using laser techniques. Applied Physics B. 1995;60:51-9.
    [83] Cignoli F, Benecchi S, Zizak G. Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames. Appl Opt. 1994;33:5778-82.
    [84] Zhao H, Ladommatos N. Optical diagnostics for soot and temperature measurement in diesel engines. Progress in Energy and Combustion Science. 1998;24:221-55.
    [85] Hottel HC, Broughton FP. Determination of True Temperature and Total Radiation from Luminous Gas Flames. Industrial & Engineering Chemistry Analytical Edition. 1932;4:166-75.
    [86] Smith LM, Keefer DR, Sudharsanan S. Abel inversion using transform techniques. Journal of Quantitative Spectroscopy and Radiative Transfer. 1988;39:367-73.
    [87] Santoro RJ, Miller JH. Soot particle formation in laminar diffusion flames. Langmuir. 1987;3:244-54.
    [88] Lou C, Li Z, Zhang Y, Kumfer BM. Soot formation characteristics in laminar coflow flames with application to oxy-combustion. Combustion and Flame. 2021;227:371-83.
    [89] Li Y-H, Chen C-H, Ilbas M. Effect of Diluent Addition on Combustion Characteristics of Methane/Nitrous Oxide Inverse Tri-Coflow Diffusion Flames. Combustion Science and Technology. 2020:1-21.
    [90] Ko Y-C, Hou S-S, Lin T-H. LAMINAR DIFFUSION FLAMES IN A MULTIPORT BURNER. Combustion Science and Technology. 2005;177:1463-84.
    [91] Sun Z, Dally B, Alwahabi Z, Nathan G. The effect of oxygen concentration in the co-flow of laminar ethylene diffusion flames. Combustion and Flame. 2020;211:96-111.
    [92] Qi S, Sun Z, Wang Z, Liu Y, He Y, Liu S, et al. Effects of gas preheat temperature on soot formation in co-flow methane and ethylene diffusion flames. Proceedings of the Combustion Institute. 2021;38:1225-32.

    下載圖示 校內:2023-07-09公開
    校外:2023-07-09公開
    QR CODE