| 研究生: |
林東杰 Lin, Tung-Chien |
|---|---|
| 論文名稱: |
蝴蝶蘭微衛星序列之選殖與特性分析 Isolation and characterization of microsatellites in Phalaenopsis orchids |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 小片段插入基因組基因庫 、蝴蝶蘭 、豐富性微衛星序列基因組基因庫 、微衛星序列 |
| 外文關鍵詞: | microsatellite-enriched genomic library, Microsatellites, Phalaenopsis orchids, small-insert genomic library |
| 相關次數: | 點閱:90 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微衛星序列(microsatellite),又稱簡單重複序列(simple sequence repeat),是一段以2 ~ 6個鹼基對為重複單位的DNA片段。微衛星序列因其共顯性遺傳、多對偶基因、高度多型性、再現性高與易以聚合酵素連鎖反應偵測等優點,成為廣泛應用於分子育種及遺傳多樣性評估的分子標誌。蝴蝶蘭是一種高經濟價值花卉作物且是台灣重要的花卉產業。建立與發展高效率的微衛星標誌系統可有效應用在蝴蝶蘭的品種鑑定與品種專利權的保護。因此,本實驗的目的在於進行蝴蝶蘭微衛星標誌的選殖及特性分析。首先,構築台灣阿媽蝴蝶蘭的小片段插入基因組基因庫及豐富性微衛星序列基因組基因庫,並篩選雙鹼基重複的微衛星序列,總計得到約170個含有微衛星序列的選殖株,目前已完成30個微衛星序列的核酸定序。比較兩種基因庫的微衛星序列選殖效率,發現後者的效率高出10倍左右。分析所選殖出的微衛星序列中,發現連續型微衛星序列佔61.3%;而複合型微衛星序列具有較高的重複次數。根據微衛星序列兩側的游離序列(flanking region)長度,估計有62.5%的微衛星序列可設計引子對。利用6個微衛星基因座引子對檢測不同品系的台灣阿媽蝴蝶蘭,發現這些微衛星基因座之對偶基因數分佈在2 ~ 13之間,平均每一個微衛星基因座會出現7個對偶基因。評估這些微衛星基因座的遺傳變異度後,顯示其範圍分佈在0.47 ~ 0.88之間;而多型性程度則以PIC值(polymorphism information content)表示,分佈在0.19 ~ 0.7之間,而平均值則為0.48。分別將台灣阿媽蝴蝶蘭PaAGS002與PaAGS003基因座之不同對偶基因選殖出並定序,經序列比對分析,發現造成對偶基因大小差異的原因包括重複次數的不同與發生在游離序列的缺失。接著,以聚合酵素連鎖反應偵測6個微衛星基因座在12種原生種蝴蝶蘭與2種同科之蘭花物種的跨物種擴增性,結果顯示微衛星基因座在相近物種間具有高保守性。進一步,由14種原生種蝴蝶蘭與1文心蘭原生種之聚合酵素連鎖反應產物,選殖出PaAGS002相對應的微衛星基因座,並進行核酸定序與親緣演化分析,發現微衛星標誌與傳統型態分類的演化模式大致相同。此外,利用4種蝴蝶蘭商業栽培品種測試5個微衛星基因座的可利用性,初步結果顯示其具有蝴蝶蘭品種鑑定的應用潛力。
Microsatellites, also known as simple sequence repeats (SSRs), are short (2-6 bp) tandemly repeated DNA sequences. Microsatellites are widely used as genetic markers in molecular breeding and genetic diversity assessment because they are codominant, multiallelic, highly polymorphic, high reproducibility and easily scored by PCR. Phalaenopsis orchid is among the most valued ornamentals and considered as an important floriculture industry in Taiwan. The establishment and development of very efficient SSR markers would be very useful for orchid cultivar identification and proprietary variety protection. Therefore, the objectives of this study were to isolate, identify and characterize SSR markers for Phalaenopsis orchids. Firstly, the small-insert genomic library and microsatellite-enriched genomic library of Phalaenopsis amabilis were contructed and screened for dinucleotide, AG/CT or AC/TG- microsatellite sequences. A total of approximate 170 microsatellite-containing clones were obtained. Comparing the efficiency of the two microsatellite isolation strategies, the enrichment approach showed much greater efficiency up to 10-fold. Presently, 30 clones have been sequenced, 61.3% of which are perfect repeats and compound repeats have the higher values of repeat number. According to the length of flanking sequences of microsatellite clones, 62.5% primer pairs could be designed for amplification. Six SSR primer pairs were evaluated for amplification and genetic polymorphism in several Phalaenopsis amabilis cultivars. The number of alleles found per locus varied from 2 to 13 with a mean number of 7. Heterozygosity was ranged from 0.47 to 0.88. The level of polymorphism (polymorphism information content, PIC) ranged from 0.19 to 0.7 with an average of 0.48. Different alleles PaAGS002 and PaAGS003 were cloned from Phalaenopsis amabilis, respectively. These clones were sequenced and aligned, the results revealed that the size differences among the microsatellite alleles are not only due to varization in the numbers of repeats but also due to the occurrence of insertion/ deletion events in the flanking region. Cross-species amplification of six microsatellite loci were tested in 14 orchid species, the results suggested that microsatellite loci were highly conserved in Phalaenopsis species. Furthermore, sequences of PCR products at the homologous microsatellite locus PaAGS002 from 15 orchid species were subjected to phylogenetic analysis, the evolutionary pattern of SSR is highly consistent with that based on morphological characters. In addition, five microsatellite loci were also tested for utility in four commercial orchid varieties. The preliminary results indicated that microsatellites will have potential applications in orchid cultivar identification.
朱耀源和朱玉瓊,2002,台灣發展花卉產業的利基,科學發展,351:40-49.
陳文輝,2002,蝴蝶蘭的品種改良,科學發展,351:32-39.
Arens P., Odinot P., van Heusden A.W., Lindhout P. and Vosman B. (1995) GATA and GACA repeats are not evenly distributed throughtout the tomato genome. Genome 38: 84-90.
Areshchenkova T. and Ganal M.W. (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet. 104: 229-235.
Bao J.S., Croke H. and Sun M. (2003) Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor. Appl. Genet. 105: 898-905
Broun P. and Tanksley S.D. (1996) Characterization and genetic mapping of simple sequence repeats in tomato genome. Mol. Gen. Genet. 250: 39-49.
Butcher P.A., Decroocq S., Gray Y. and Moran G.F. (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor. Appl. Genet. 101: 1282-1290.
Chavarriaga-Aguirre P., Maya M.M., Bonierbale M.W., Kresovich S., Fregene M.A., Tohme J. and Kochert G. (1998) Microsatellites in Cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor. Appl. Genet. 97: 493-501.
Chen W.H. and Wang Y.T. (1996) Phalaenopsis orchid culture. Taiwan Sugar Research Institute 43: 11-16.
Chen X., Temnykh S., Xu Y., Cho Y.G. and McCouch S.R. (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567.
Christenson E.A. (2001) Phalaenopsis. Timber Press Inc., Oregon, USA, pp 39-248.
Cipriani G., Lot G., Huang W.G., Marrazzo M.T., Peterlunger E. and Testolin R. (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Genet. 99: 65-72.
Condit R. and Hubbell S.P. (1991) Abundance and DNA sequences of two-base repeat regions in tropical tree genomes. Genome 34: 66-71.
Dayanandan S., Bawa K.S. and Kesseli R. (1997) Conservation of microsatellites among tropical trees (Leguminosae). Am. J. Bot. 84: 1658-1663.
Decroocq V., Fave M.G., Hagen L., Bordenave L. and Decroocq S. (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet. 106: 912-922.
Devey M.E., Bell J.C. Uren T.L. and Moran G.F. (2002) A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata. Genome 45: 984-989.
Di Gaspero G., Peterlunger E., Testolin R., Edwards K.J. and Cipriani G. (2000) Conservation of microsatellite loci within the genus Vitis. Theor. Appl. Genet. 101: 301-308.
Doly J.J. and Dolye J.L. (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Dressler R.L. (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge.
Edwards K.J., Barker J.H.A., Daly A., Jones C. and Karp A. (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechnique 20: 758-760.
Fang G., Hammer S. and Grument R. (1992) A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechnique 13: 52-55.
Fischer D. and Bachmann K. (1998) Microsatellite enrichment in organism with large genomes (Allium cepa L.). Biotechnique 24: 796-802.
Fisher P.J., Richardson T.E. and Gardner R.C. (1998) Characteristics of single- and mutil-copy microsatellites from Pinus radiate. Theor. Appl. Genet. 96: 969-979.
Fu Y.M., Chen W.H., Tsai W.T., Lin Y.S., Chyou M.S. and Chen Y.H. (1997) Phylogenetic studies of taxonomy and evolution among wild species of Phalaenopsis by random amplified polymorphic DNA markers. Rept. Taiwan Sugar Res. Inst. 157: 27-42.
Gonzalez-Martinez C., Gerber S., Cervera T., Martinez-Zapater M., Gil L. and Alia R. (2002) Seed gene flow and fine-scale structure in a Mediterranean pine ( Pinus pinaster Ait.) using nuclear microsatellite markers. Theor. Appl. Genet. 104: 1290-1297.
Grunstein M. and Hogness D. (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA. 72: 3961-3965.
Gupta P.K., Balyan H.S., Sharma P.C. and Ramesh B. (1996) Microsatellites in plants: a new class of molecular marker. Curr. Sci. 70: 45-54.
Guyomarc’h H., Sourdille P., Edwards K.J. and Bernard M. (2002a) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor. Appl. Genet. 104: 1164- 1172.
Guyomarc’h H., Sourdille P., Edwards K.J. and Bernard M. (2002b) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor. Appl. Genet. 105: 736- 744.
Hormaza J.I. (2002) Molecular charazterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor. Appl. Genet. 104: 321-328.
Kao Y.Y., Chng S.B., Lin T.S., Hsieh C.H., Chen Y.H., Chen W.H. and Chen C.C. (2001) Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann. Bot. 87: 387-395.
Kijas J.M.H., Fowler J.C.S. and Thomas M.R. (1995) An evaluation of sequence tagged microsatellite site markers for genetic analysis Citrus and related species. Genome 38: 349-355.
Kaundun S.S. and Matsumoto S. (2002) Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome 45: 1041-1048.
Kesseli R.V., Paran I. and Michemore R.W. (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD marker. Genetics 136(4): 1435-1446.
Khadari B., Breton C., Moutier N., Roger P., Besnard G., Berville A. and Dosba F. (2003) The use of molecular markers for germplasm management in a French olive collection. Theor. Appl. Genet. 106: 521-529.
Khasa P.D., Newton C.H., Rahman M.H., Jaquish B. and Danclk B.P. (2000) Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43: 439-448.
Li Y.H. (2000) Investigation on the physical distribution of microsatellites in phalaenopsis orchid by fluroscence in situ hybridization. National Taiwan University, Master Thesis.
Lin S., Lee H.C., Chen W.H., Chen C.C., Kao Y.Y., Fu Y.M., Chen Y.H. and Lin T.Y. (2001) Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. J. Amer. Soc. Hort. Sci. 126(2): 195-199.
Mace E.S. and Godwin I.D. (2002) Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta). Genome 45: 823-832.
Maguire T.L., Edwards K.J., Saenger P. and Henry R. (2000) Characterisation and analysis of microsatellite loci in mangrove species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Theor. Appl. Genet. 101: 279-285.
Metais I., Hamon B., Jalouzot R. and Peltier D. (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor. Appl. Genet. 104: 1346-1352.
Morgante M., Hanafey M. and Powell W. (2002) Microsatellites are preferentially associates with non-repetitive DNA in plant genomes. Nat. Genet. 30: 194-200.
Nei M. (1973) Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321-3323.
Ostrander E.A., Jong P.M., Rine J. and Duyk G. (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc. Natl. Acad. Sci. USA 89: 3419-3423.
Powell W., Machray G.C. and Provan J. (1996) Polymorphism revealed by simple sequence repeats. Trands Plant Sci. 1: 215-222.
Rallo P., Dorado G. and Martin A. (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor. Appl. Genet. 101: 984-989.
Rassmann K., Schlotterer C., and Tautz D. (1991) Isolation of simple sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis 12: 113-118.
River R., Edward K.J., Barker J.H.A. Arnold G.M., Ayad G., Hodgkin T. and Karp A. (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42: 668-675.
Roder M.S., Plaschke J., Konig S.U., Borner A., Sorells M.E., Tanksly S.D. and Canal M.W. (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Gent. 246: 327-333.
Roder M.S., Korzun V., Gill B.S. and Ganal M.W. (1998) The physical mapping of microsatellite markers in wheat. Genome 41: 278-283.
Rossetto M., McLauchlan A., Harriss F.C.L., Henry R.J., Baverstck P.R., Lee L.S., Maguire T.L. and Edwards K.J. (1999) Abundance and polymorphism of microsatellite markers in tea tree (Melaleuca alternifolia, Myrtaceae). Theor. Appl. Genet. 98: 1091-1098.
Rossetto M. (2001) Sourcing of SSR markers from related plant species. In: Henry R (ed) Plant genotyping – the DNA fingerprinting of plant. CAB International, Wallingford, UK, pp 211-224.
Sagawa Y. (1962) Cytological studies of the genus Phalaenopsis. Amer. Orchid Soc. Bul. 31: 459-465.
Schlötterer C., and Tautz D. (1992) Slippage synthesis of simple sequence DNA. Nucl. Acid. Res. 20: 211-215.
Scotti I., Magni F., Paglia G.P. and Morgante M. (2002) Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor. Appl. Genet. 106: 40-50.
Scott K.D., Eggler P., Seaton G., Rossetto M., Ablett E.M., Lee L.S. and Henry R.J. (2000) Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100: 723-726.
Sweet H.R. (1980) The genus Phalaenopsis. The Orchid Digest, Inc., U.S.A. pp 11-20.
Tautz D. and Renz M. (1984) Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acid Res. 12: 4127-4138.
Thiel T., Michalek W., Varshney R.K. and Graner A. (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley
(Hordeum vulgare L.). Theor. Appl. Genet. 106: 411-422.
Tsai C.C., Huang S.C., Huang P.L. and Chou C.H. (2002) Phylogeny of genus Phalaenopsis (Orchidaceae) with emphasis on subgenus Phalaenopsis based on the sequence of internal transcribed spacer 1, 2 of ribosomal DNA. International Symposium on Agricultural Biotechnology. 13-14 December, 2002. National Cheng Kung University, Tainan, Taiwan, Poster contents: 114-119.
Van der Schoot J., Pospiskova M., Vosman B. and Smulders M.J.M. (2000) Development and characterization of microsatellite markers in black poplar (Populus nigra L.). Theor. Appl. Genet. 101: 317-322.
Vos P., Hogers R., Bleeker M., Reijans M., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. (1995) AFLP: a new technique for DNA fingerprinting. Nucl. Acid Res. 23: 4407-4414.
Weir B. (1990) Genetic data analysis. Sinauer Associates, Sunderland,Mass
Welsh J., Chada K., Dalal S.S., Cheng R., Ralph D. and McClelland M. (1992) Arbitrarity primed PCR fingerprinting of RNA. Nucl. Acid Res. 20: 4965-4970.
Wu K.S. and Tanksley S.D. (1993) Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol. Gen. Genet. 214: 225-235.
Wu Y.C. (2002) Molecular cloning and characterization of orchid ETHYLENE- INSENSITIVE3 (EIN3) gene. National Cheng Kung University, Master Thesis.
Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T. and Matsuta N. (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor. Appl. Genet. 102: 865-870.
Zane L., Bargelloni L. and Patarnello T. (2002) Strategies for microsatellite isolation : a review. Mol. Ecol. 11: 1-16.