| 研究生: |
蕭禎源 hsiao, chen-yuan |
|---|---|
| 論文名稱: |
布朗馬達在兩狀態間切換之運動分析 The Kinetic Analysis of Brownian Motors in two states Transition |
| 指導教授: |
黃明哲
huang, ming-jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | Fokker-Planck equation 、Rocking ratchet 、Flashing ratchet 、布朗馬達 |
| 外文關鍵詞: | Fokker-Planck equation, Brownian motor, Rocking ratchet, Flashing ratchet |
| 相關次數: | 點閱:98 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物馬達為微觀與巨觀界面間相互影響的例子。這些分子機械的運動是由非常大的黏滯性和分子間碰撞所引起的布朗力,而並非由慣性和加速度所控制。另一方面,ATP水解的生物化學過程中,隨著能量的釋放,布朗運動可用於整流、形成淨流動和功。
為了使布朗馬達能往單一方向來運動,本文採用Rocking ratchet 和 Flashing ratchet 兩者耦合的模型來模擬布朗馬達的運動情況。
本文採用 Fokker-Planck equation 當作布朗馬達的運動方程式,利用連續馬可夫過程 (continuous Markov process) 描述其跳躍過程(jump process)與跳躍率(jump rate),來求得布朗馬達運動性質。
使用MATLAB7.0 軟體計算上述的方程式,分析兩個位能狀態的切換,加上週期性鋸齒狀波且受到外力作用,來討論布朗馬達的平均速度與效率的影響。
Biological motors are examples of systems at the interface between the microscopic and macroscopic world. The motion of these molecular machines is dominated not by inertia and acceleration in response to a macroscopic force, but by very large viscosity and by random Brownian forces arising from collisions with the molecules of the medium. On the other hand, the release of energy by a biochemical process such as ATP hydrolysis allows Brownian motion to be rectified.
In order to make Brownian motors produce motion in one direction, This paper uses the coupling model of Rocking ratchet and flashing ratchet to simulate the movement situation of Brownian motors.
The Fokker-Planck equation is the governing equation in this paper, using continuous Markov process to describe a jump process and the jump rates to request the property of Brownian motion.
This paper used MATLAB 7.0 to calculate the equations above, to analyze the two states transition, and plus period potential with external force. To discuss the velocity and efficiency of Brownian motions.
1. Astumian, R. D. Thermodynamics and Kinetics of a Brownian Motor. Science. 276, 917-922 (1997).
2. Astumian, R. D. and Bier, M., Mechanochemical Coupling of the Motion of Molecular Motors to ATP Hydrolysis, Biophysical Journal, Vol.70, 637-653 (1996).
3. Bier, M. and Astumian, R. D., Biased Brownian motion as the operating principle for microscopic engines, Bioelectrochemistry and Bioenergetics. 39, 67-75 (1996).
4. Elston, T. C., A Marcoscopic Description of Biomolecular Transport., J. Math. Biol, 41, 189-206, (2000).
5. Hirakawa, E., Higuchi, H., and Toyoshima, Y.Y., Processive movement of single 22S dynein molecules occurs only at low ATP concentrations, RNAS dynein molecules occurs only at low ATP concentrations, PNAS, 97, 2533-2537 (2000).
6. Imre Derenyi and Tamas Vicsek, Realistic Models of Biological Motion,rxiv preprint cond-mat/9810326 (1998).
7. Keller, D. & Bustamante, C. The Mechanochemistry of Molecular Motors.
Biophysical Journal. 78, 541-556 (2000).
8. Ai, B. Q., Wang, X. J, Liu, G. T., Xie, H. Z., Wen, D. H., Chen, W., and
Liu, L. G., Current reversals in an inhomogeneous system with asymmet- ric unbiased fluctuations, Eur. Phys. J. B 37, 523-526 (2004).
9. Makhnovskii, Y. A., Rozenbaum, V. M., Yang, D. Y., Lin, S. H. & Tsong, T. Y. Flashing Ratchet Model with High Efficiency. Physical Review E. 69, 021102 (2004).
10. MARTIN BIER, Brownian ratchets in physics and biology., Contemporary Physics, volume 38, number 6, pages 371 - 379, (1997).
11. M. Nishiyama, H. Higuchi, and T.Yanagida, “Chemomechanical coupling of the forward and backward steps of single kinesin molecules”, Nature Cell Biol 4, 790-797, (2002).
12. Oster, G. & Wang, H. How protein motors convert chemical energy into mechanical work. In Molecular Motors,M. Schliwa, ed. 207-228, Wiley-VCH (2002).
13. Oster, G. & Wang, H. Reverse engineering a protein: the mechano chemistry of ATP synthase. Biochim. Biophys. Acta 1458, 482-510 (2000).
14. Parrondo, J. M. R., Blanco, J. M., Cao, F. J. & Brito, R. Efficiency ofBrownian Motors. Europhys. Lett. 43, 248-254 (1998).
15. Peskin, C.S., and Oster, G. F., Force production by depolymerizing mirot-bules : load-velocity and run-pause statistics, Biophys. J., 69, 2268-2276, (1995).
16. Peter Reimann, Brownian motors: noisy transport far from equilibrium1., Universit¨at Augsburg, Institut f¨ur Physik, Universit¨atsstr. 1, 86135 Augsburg, Germany, (2000).
17. Richard, B., Melissa, A., Make room for dynein, Cell Biology, 8, 490-494, (1998).
18. Wang, H., Peskin, C. S. & Elston, T. C. A Robust Numerical Algorithm forStudying Biomolecular Transport Processes. J. Theor. Biol. 221, 491-511 (2003).
19. Zeldovich, K. B., Joanny, J. F. & Prost, J. Motor Proteins Transporting
Cargos. Eur. Phys. J. E. 17, 155-163 (2005).
20. 黃彥博, 分子馬達酵素蛋白之不可逆性因子耦合, 國立成功大學工程 科學系碩士論文 (2006).
21. 賴冠旭, 生物分子馬達運動分析, 國立成功大學工程科學系碩士論文 (2006).
22. 楊秉凡, 切換速率對布朗馬達運動分析, 國立成功大學工程科學系碩 士論文 (2007).
23. 陳相慶, 布朗馬達於變溫下之運動分析, 國立成功大學工程科學系碩 士論文 (2007).
24. 龐寧寧, 布朗運動界面成長與擴散現象, 物理雙月刊, 27卷3期(2005).