簡易檢索 / 詳目顯示

研究生: 王志文
Wang, Zhi-Wen
論文名稱: 砷化鎵系列氧化侷限面射型發光元件之研製
Investigation and Fabrication of GaAs-based Oxide-Confined Vertical Cavity Surface Emitting Devices
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 137
中文關鍵詞: 氧化侷限面射型發光元件
外文關鍵詞: VCSEL, Oxide-Confined
相關次數: 點閱:125下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的在於探討紅外光面射型雷射之元件製程技術及特性改良之相關研究,其中又分為共振腔發光二極體和面射型雷射。本文所使用的方法為利用選擇性氧化技術定義雷射增益區,達到電流侷限及光場侷限的效果,以獲得較高輸出功率。本文之紅外光面射型雷射其活性層材料主要為未摻雜之砷化銦鎵量子井,並在共振腔鄰近的區域成長具有高鋁含量之砷化鋁鎵層,在製程中利用感應耦合電漿蝕刻技術將高鋁含量之砷化鋁鎵層暴露出來,並置於高溫水氣中進行選擇性氧化製程,以形成絕緣之氧化鋁電流侷限層,同時可提供光場侷限效果。活性層兩側為交錯排列之砷化鎵/砷化鋁鎵半導體層,作為分佈布拉格反射器,每一層厚度均需精確控制在發光波長的四分之一,以期能獲得較高之反射率。為有效降低所製作之面射型雷射元件串聯電阻,因此所採用之砷化鎵基板為N型摻雜,同時底部及頂部之分佈布拉格反射器分別為N型及P型摻雜,以便於製作金屬電極。
    利用該製程方法所製作的共振腔發光二極體,可以消除金屬遮蔽的效應,且在連續波300 mA電流驅動的條件下,其輸出功率已從1.8 mW增加至2.6 mW(氧化後)。就850 nm面射型雷射來說,氧化孔徑較大的元件(20 m)的情況下,其輸出功率可達到10 mW 以上且有較佳的熱消散能力。在室溫脈衝操作條件下,920 nm面射型雷射最大輸出功率24 mW,且電阻為20歐姆,室溫下臨界電流為33 mA,特性溫度129 K,波長對溫度變化率為0.06508 nm/oC。室溫下連續波操作只能獲得共振腔發光二極體的特性,但是半高寬已經可以達到1.98 nm。

    The main goal of this thesis is to investigate the processing technology and characteristics improvement of infrared vertical cavity surface light emitting devices, including resonant cavity light emitting diodes (RCLEDS) and vertical cavity surface emitting lasers (VCSELs). In this thesis, we will use the GaAs-based material system to develop the vertical cavity surface light emitting devices, including device fabrication technology and characteristic improvement. Using the selective oxide confined technology to define the laser gain region and obtain current and optical confinement, we can acquire higher output power. Currently the designed infrared VCSEL consists of undoped InGaAs quantum wells as the active layer, and include a high Al composition AlGaAs layer adjacent to the active region. In the process procedure the high Al composition AlGaAs layer needs to be exposed by using inductively coupled plasma (ICP) etching. And then being placed in high temperature steam environment to carry out the selective oxidation process, to form the insulating Alumina current confinement aperture, and provide optical confinement at the same time. The active layer will be sandwiched by two distributed Bragg reflectors (DBRs), which consist of interlaced GaAs/AlGaAs semiconductor layers, which act as the. The thickness of each layer must be precisely controlled as a quarter wavelength in order to obtain higher reflectivity and stop bandwidth. For the purpose of reducing series resistance of the fabricated VCSEL devices, we will adopt N+ GaAs substrate, and the bottom and top DBR will be n- and p-doped, respectively, so as to make metal contact more easier.
    The OC-RCLEDs have been proven to be superior to conventional RCLEDs. The comparison of L-I characteristics of RCLEDs and OC-RCLEDs indicates that the output power at 300 mA can be greatly improved from 1.8 to 2.6 mW by simply oxidizing the oxide layer. For 850 nm VCSELs, the larger aperture diameter (20m) has not only higher light output power (10.4mW at 30mA) but also better thermal dissipation. The high power (24 mW) 920 nm oxide-confined VCSEL under pulse mode operation is fabricated successfully, and the optical and electrical characteristics are measured. The series resistance is 20 , threshold current is 33 mA, characteristic temperature (To) is 129 K and the wavelength shift rate with various temperature is 0.06508 nm/oC. Under continuous wave (CW) operation, the device works as RCLED and the FWHM of EL spectrum is as narrow as 1.98 nm.

    Contents Abstract (in Chinese) I Abstract (in English) III Acknowledge V Contents VI Table captions VIII Figure captions IX Chapter 1 Introduction 1 1-1 Background: Semiconductor laser 1 1-2 A Brief History of Vertical Cavity Surface Emitting Lasers 2 (VCSELs) 1-3 Advantages and drawbacks of VCSELs 3 1-4 Application of VCSELs 4 1-5 Overview of this thesis 7 Chapter 2 Theory of VCSELs 17 2-1 Principles of semiconductor laser operation 17 2-2 VCSELs 19 2-2-1 Distributed Bragg Reflectors (DBRs) 19 2-2-2 Active region 19 2-2-3 Gain-cavity detuning 21 2-2-4 Current confinement 22 2-3 Resonant Cavity Light Emitting Diodes (RCLEDs) 24 2-4 Summary 25 Chapter 3 Fabrication Technology of VCSELs & RCLEDs 37 3-1 General process procedure 37 3-2 Inductively Coupled Plasma 38 3-2-1 PR as etching hard mask 40 3-2-2 SiO2 as etching hard mask 41 3-3 Selective Wet Oxidation 42 3-4 Summary 44 Chapter 4 Fabrication and characterization of Resonant-Cavity 67 Light Emitting Diodes 4-1 Experiment and Process 68 4-2 Results and discussion for R1 69 4-3 Results and discussion for R2 70 4-4 Summary 73 Chapter 5 High power Vertical-Cavity Surface Emitting Lasers 93 5-1 Fabrication and characterization of 850 nm OC-VCSELs 93 5-1-1 Experiment and process 93 5-1-2 Results and discussion 94 5-1-3 Summary 97 5-2 Fabrication and characterization of 920 nm OC-VCSELs 97 5-2-1 Experiment and process 98 5-2-2 Results and discussion 98 5-2-3 Summary 101 Chapter 6 Conclusion and Future Work 133 6-1 Conclusion 133 6-2 Suggestions for future work 134

    Chapter 1
    [1] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J .Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, pp. 366-268, Nov. 1, 1962.
    [2] H. Koemer, “A proposed class of heterojunction lasers”, Proceedings IREE 51, pp. 1782-1783, 1963.
    [3] I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, “Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett., vol. 17, no. 3, pp. 109-111, 1970.
    [4] http://www.nobel.se/physics/laureates/2000/press.html
    [5] K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1201–1215, Dec. 2000.
    [6] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, no. 12, pp. 2329–2330, Dec. 1979.
    [7] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp.348-350, 1984.
    [8] K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface- emitting laser with Ith = 6 mA,” Electron. Lett., vol. 23, no. 3, pp. 134–136, Jan. 1987.
    [9] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett., vol. 55, no. 3, pp. 221–222, July 1989.
    [10] J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion and 30-ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett., vol. 55, pp. 22–24, July 1989.
    [11] R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 27, no. 6, pp. 1359–1367, Jun. 1991.
    [12] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett., vol. 65, no. 1, pp. 97–99, Jul. 1994.
    [13] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Topics Quantum Electron., vol. 3, no. 3, pp. 916–926, Jun. 1997.
    [14] Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAlAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1234–1236, Nov. 1995.
    [15] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett., vol. 31, no. 3, pp. 208–209, Feb. 1995.
    [16] R. Jmger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett., vol. 33, no. 4, pp. 330–331, Feb. 1997.
    [17] F. Koyama, “Recent Advances of VCSEL Photonics,” IEEE J. Lightwave Technology, vol. 24, no. 12, Dec. 2006.
    [18] A. V. Krishnamoorthy, K. W. Goossen, L.M.F. Chirovsky, R.G. Rozier, P . Chandramani, S.P. Hui, J. Lopata, J.A. Walker, L.A. D’Asaro, “16*16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1073-1075, 2000.
    [19] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh and A. Larsson, “Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief,” IEEE Photon Technol. Lett., vol. 16, no. 2, 2004.
    [20] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, Chapter 7, John Wiley & Sons, Inc., New York, 1995.
    [21] T. Someya, Y. Arakawa, R. Werner and A. Forchel, “Room temperature operation of blue InGaN VCSELs by optical pumping”, Conference on Lasers and Electro-Optics (CLEO), May 1999.
    [22] M. Osin´ski, V A. Smagley, G A. Smolyakov and P G. Eliseev, “Design of InGaN–GaN–AlGaN vertical-cavity surface-emitting lasers using electrical–thermal–optical simulation,” IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 2, pp. 270-279, 2001.
    [23] K. Streubel, U. Helin, V. Oskarsson, E. Bäcklin and Å. Johansson, “High brightness visible (660nm) resonant-cavity light-emitting diode”, IEEE Photon. Technol. Lett, vol. 10, pp. 1685-1687, 1998.
    [24] Naresh Chand, Sung Nee George Chu NiLoy K. Dutta, John Lopata, Michael Geva, Alexei V. Syrbu, Alexandru Z. Mereutza, and Vladimir, “Growth and Fabrication of High-Performance 980-nm Strained InGaAs Quantum-Well lasers for Erbium-Doped Fiber Amplifiers”, IEEE J. Quantum Electron., vol. 30, no. 2, 1994.
    [25] J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ_Prentice.
    [26] Thesis of Master degree, Institute of Applied Physics, CYCU, 2002
    [27] M. Kondow, T. Kitatani, S. Nakatsuka, Michael C. Larson, K. Nakahara, Y. Yazawa, M. Okai, K.Uomi “GaInNAs: A novel material for long-wavelength Semiconductor Lasers, ” IEEE J. Sel. Topics Quantum Electron., vol. 3, no. 3, pp. 719–730, 1997.
    [28] J Wu, W Shan and W Walukiewicz, “Band anticrossing in highly mismatched III–V semiconductor alloys.” Semicond. Sci. Technol, vol. 17, pp. 860-869, 2002.
    [29] S. Sato and S. Satoh, “Room-temperature continuous-wave operation of 1.21m continuous wave operation of highly strained GaInAs quantum well lasers on GaAs substrates”, Jpn. J. of Appl. Phys., pp. 990-992, 1999.
    [30] E. Pougeoise, P. Gilet, P. Grosse, S. Poncet, A. Chelnokov, J. M. Gerard, G. Bourgeois, R. Stevens, R. Hamelin, M. Hammar, J. Berggren, and P. Sundgren, “Strained InGaAs quantum well vertical cavity surface emitting lasers emitting at 1.3 μm,” Electron. Lett., vol. 42, no. 10, pp. 584–586, May 2006.
    [31] J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, Z. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSEL’s on GaAs substrates emitting at 1.3 μm,” Electron. Lett., vol. 36, no. 16, pp. 1384–1385, Aug. 2000.
    [32] P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi, and Y. H. Zhang, “Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications,” Electron. Lett., vol. 39, no. 13, pp. 987–988, Jun. 2003.
    [33] M.A. Wistey, S.R. Bank, H.P. Bae, H.B. Yuen, E.R. Pickett, L.L. Goddard and J.S. Harris, Jr. “ GaInNAsSb-GaAs vertical cavity surface emitting lasers at 1534nm,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no.4, pp. 795-800, 2002.
    Chapter 2
    [1] Coldren L. A. and Corzime S. W.,Diode Lasers and Photonic Integrated Circuits Wiley, New York, 1995.
    [2] Yariv A., Quantum Electronics, 3rd., Wiley, New York, 1989.
    [3] Bjork., Yamamoto Y., and Heitmann H., in Confined Electrons and Photons, Burstein E. and Weisbuch C., eds., Plenum Press, New York, 1995.
    [4] A. Karim, S. Björlin, Joachim Piprek, and J. E. Bowers, “Long wavelength vertical cavity lasers and amplifiers,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1244-1253, 1999.
    [5] http://batop.de/informations/n_AlGaAs.html.
    [6] S.W. Corzine, R. S. Geels, J.W. Scott, R.-H. Tan, and L.A. Coldren, “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron., vol. 25, pp. 1513-1524, 1989.
    [7] J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multiplayer optical cavities,” Appl. Phys. Lett., vol. 66, no. 3, pp. 335–337, Jan. 1995.
    [8] Z. Hang, D. Yan, F. H. Pollak, G. D. Pettit, and J. M. Woodall, “Temperature dependence of the direct band gap of InxGa1¡xAs (x = 0.06 and 0.15),” Phys. Rev. B., vol. 44, no. 19, pp. 10 546–10 550, Nov. 1991.
    [9] D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 29, no. 6, pp. 2013-2022, 1993.
    [10] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. Ronald Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810-1824, 1997.
    [11] Schubert E. F., Wang Y.H., Cho A.Y., Tu L.W., and Zydzik G.J. “Resonant cavity light emitting dioed,” Appl. Phys. Lett., vol. 60, no. 8, 1992.
    [12] E. F. Schubert, in Light-Emitting Diodes, Chap. 10, Cambridge Univ. Press, United Kingdom, 2003.
    Chapter 3
    [1] S. A. Campbell, The science and engineering of microelectronic fabrication, 2nd edition, Oxford University Press, New York, 2001.
    [2] Yu Hsin-Chieh, “Investigation and Fabrication of GaAs-based Oxide-Confined Vertical Cavity Surface Emitting Lasers,” Ph. D. Dissertation, Nat. Cheng Kung Univ., pp. 56, 2005.
    [3] K. D. Choquette, K. M. Geib, C. I. H. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Topics Quantum Electron., vol. 3, no. 3, pp. 916-926, 1997.
    [4] C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, and H. Q. Hou, “ Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett., vol. 75, pp. 73-75, 1999.
    [5] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, p. 3770, 1965.
    [6] C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, and H. Q. Hou,” Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett., vol. 75, pp. 73-75, 1999.
    [7] S. A. Feld, J. P. Loehr, R. E. Sherriff, J. Wiemeri, and R. Kaspi, “In-situ optical monitoring of AlAs wet oxidation using a novel low-temperature low-pressure steam furnace design,” IEEE Photon. Technol. Lett., vol. 10, pp. 197-199, 1998.
    [8] D. L. Huffaker, D. G. Deppe, C. Lei, and L. A. Hodge, “Sealing AlAs against oxidative decomposition and its use in device fabrication,” Appl. Phys. Lett., vol. 68, pp.1948-1950, 1996.
    [9] D. H. Lim, G. M. Yang, J. H. Kim, K. Y. Lim, and H. J. Lee, “Sealing of AlAs against wet oxidation and its use in the fabrication of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 71, pp.1915-1917, 1997.
    Chapter 4
    [1] H. Yokoyama, “Physics and Device application of Optical Microcavities,” Science, vol. 256, pp. 66-70, 1992.
    [2] R. J. Ram, D. I. Babic, R. A. York, and J. E. Bowers, “Spontaneous emission in microcavities with distributed mirrors,” IEEE J. Quantum Electron, vol. 31, pp. 399-410, 1995.
    [3] N. E. J. Hunt, E. F. Schubert, R. A. Logan, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SQ resonant cavities,” Appl. Phys. Lett., vol. 60, p. 921, 1992.
    [4] D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty, “High-efficiency semiconductor resonant-cavity light-emitting diodes: a review,” IEEE J. Sel. Topics Quantum Electron., vol. 8, pp. 189, 2002.
    [5] C. Dill, R. P. Stanley, U. Oesterle, D. Ochoa, and M. Ilegems, “Effect of detuning on the angular emission pattern of high-efficiency microcavity light-emitting diodes,” App. Phys. Lett., vol. 73, p. 3812, 1998.
    [6] C. L. Tsai, C. W. Ho, C. Y. Huang, F. M. Lee, M. C. Wu, H. L. Wang, S. C. Ko, W. J. Ho, J. Huang, and J. R. Deng, “ Fabrication and characterization of 650nm resonant-cavity light emitting diodes ” J. Vac. Sci. Technol. B, vol. 22, pp. 2518-2521, 2004.
    [7] L. V. Dao, M. Gal, G. Li, and C. Jagadish, “Photoluminescence in delta-doped InGaAs/GaAs single quantum wells,” J. Appl. Phys., vol. 87, p. 3896, 2000.
    Chapter 5
    [1] U. Fiedler, G. Reiner, P. Schnitzer, and K. J. Ebeling, IEEE Photon. Technol. Lett., vol. 8, pp. 746-748, 1996.
    [2] J. Bristow, J. Lehman, Y. Liu, M. Hibbs-Brenner, L. Galarneau, and R. A. Morgan, proc. SPIE, vol. 3005, pp. 112-119, 1997.
    [3] M. Mansuripur and G. Sincerbox, Proc. IEEE, vol. 85, no. 11, pp. 1780-1796, 1997.
    [4] G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors,” IEEE J. Quantum Electron., vol. 27, pp. 1377-1385, 1991.
    [5] B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 60, no. 6, pp. 683–685, 1992.
    [6] B. Lu, P. Zhou, J. Cheng, and K. J. Malloy, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1337–1339, 1994.
    [7] K. D. Choquette, W. W. Chow, M. H. Crawford, K. M. Geib, and R. P. Schneider Jr., “Threshold investigation of oxide-confined vertical-cavity laser diodes,” Appl. Phys. Lett., vol. 68, no. 26, pp. 3689–3691, 1996.
    [8] S. Rapp, J. Piprek, K. Streubel, J. André, and J. Wallin, “Temperature sensitivity of 1.54-_mvertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron., vol. 33, pp. 1839–1845, Oct. 1997.
    [9] J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 _m vertical-cavity lasers at -30 nm gain offset,” Appl. Phys. Lett., vol. 72, no. 15, pp. 1814–1816, 1998.
    [10] J. S. Manning, “Thermal impedance of diode lasers: comparison of experimental methods and a theoretical model,” J. Appl. Phys., vol. 52, no. 5, pp. 3179-3184, 1981.
    [11] W. Nakwaski and M. Osinski, “Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional array,” Electron. Lett., vol. 28, no. 6, pp. 572-574, 1992.
    [12] M. Osinski and W. Nakwaski, “Effective thermal conductivity analysis of 1.55m InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett., vol. 29, no. 11, pp. 1015-1016, 1993.
    [13] T. Wipiejewski, D. B. Young, B. J. Thibeault, and L. A. Coldren, “Thermal crosstalk in 4 x 4 vertical-cavity surface-emitting laser arrays,” IEEE Photon. Tech. Lett., Vol. 8, No. 8, pp. 980-982, 1996.
    [14] M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. Daniel Dapkus, “Thermal impedance of VCSEL’s with AlOx –GaAs DBR’s,” IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 15-17, 1998.
    [15] M. Grabherr, B. Weigl, G. Fkeiner, R. Michalzik. M. Miller and K.J. Ebeling “High power top-surface emitting oxide confined vertical-cavity laser diodes,” IEEE Electron. Lett., vol. 32, no. 18, 1996.
    [16] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett., vol. 31, no. 3, pp. 208–209, Feb. 1995.
    [17] R. Jmger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett., vol. 33, no. 4, pp. 330–331, Feb. 1997.
    [18] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers”, Appl. Phys. Lett. vol 65, pp. 97-99, 1994.
    [19] M.de, la Fargue and M.Missous, “Effects of high index plane on device performances of near-infrared InGaAs/GaAs/AIGaAs resonant cavity light-emitting diodes,” IEE Proc.-Optoelectron., vol. 147, no. I, 2000.
    [20] M. Pessa*, M. Toivonen, P. Savolainen, S. Orsila, P. SipilaÈ, M. Saarinen, P. Melanen, V. Vilokkinen, P. Uusimaa, J. Haapamaa, “Growth of resonant cavity quantum well light emitting diodes and two-junction solar cells by solid source molecular beam epitaxy,” Thin Solid Films, vol. 367, pp. 260-266, 2000.
    [21] K. Streubel, Member, IEEE, U. Helin, V. Oskarsson, E. Backlin, and A. Johansson “High Brightness Visible (660 nm) Resonant-Cavity Light-Emitting Diode,” IEEE Photon. Technol. Lett., vol. 10, no. 12, 1998.
    [22] Ralph Wirth, Christian Karnutsch, Siegmar Kugler, and Klaus Streubel, “High-Efficiency Resonant-Cavity LEDs Emitting at 650 nm” IEEE Photon. Technol. Lett., vol. 13, no. 5, 2001.
    [23] E. F. Schubert. Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode” Appl. Phys. Lett. vol.60, no 8, p.24, 1992.
    [24] Mika Saarinen, Ville Vilokkinen, Mihail Dumitrescu, and Markus Pessa, Member, IEEE, “Resonant-Cavity Light-Emitting Diodes Operating at 655 nm with a High External Quantum Efficiency and Light Power,” IEEE Photon. Technol. Lett., vol. 13, no. 1, 2001.
    [25] Marko Jalonen, Jukka K¨ong¨as, Mika Toivonen, Pekka Savolainen, Arto Salokatve, and Markus Pessa, “Monolithic Super-Bright Red Resonant Cavity Light-Emitting Diode Grown by Solid Source Molecular Beam Epitaxy,” IEEE Photon. Technol. Lett., vol. 10, no. 7, 1998.
    Chapter 6
    [1] M. Grabherr, B. Weigl, G. Fkeiner, R. Michalzik. M. Miller and K.J. Ebeling, “High power top-surface emitting oxide confined vertical-cavity laser diodes,” Electron. Lett., vol. 32, no. 18, 1996.

    下載圖示 校內:2012-01-18公開
    校外:2012-01-18公開
    QR CODE