簡易檢索 / 詳目顯示

研究生: 朱方瑞
Chu, Fang-Jui
論文名稱: 雙閘極調控鐵電高分子耦合氧化銦鎵鋅電晶體應用於人工神經網路與儲備池運算
Dual-Gate Modulation of Ferroelectric Polymer Coupled IGZO Transistor for Artificial Neural Network and Reservoir Computing
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 110
中文關鍵詞: 類神經網路儲備池運算薄膜電晶體雙閘極電晶體鐵電材料載子捕 捉/釋放效應
外文關鍵詞: Neuromorphic Computing, Reservoir Computing, Thin Film Transistor, Dual-gate Transistor, Ferroelectric, Charge Trapping/Detrapping
ORCID: none
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract III 誌謝 VII 內文目錄 VIII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 介紹與研究動機 3 第二章 理論基礎與文獻回顧 4 2-1 非晶系氧化物半導體之薄膜電晶體介紹 4 2-2 薄膜電晶體之操作與元件特性 6 2-3 鐵電與極化效應應用 11 2-3.1 鐵電材料、極化效應與其應用 11 2-3.2 鐵電遲滯曲線 16 2-3.3 鐵電高分子聚偏二氟乙烯-三氟乙烯(P(VDF-TrFE))性質介紹 19 2-4 神經突觸行為與訊號傳輸原理機制及應用 21 2-4.1 神經元型態與構造 21 2-4.2 神經元突觸連結傳遞 23 2-4.3 動作電位 26 2-4.4 短期突觸可塑性(Short term plasticity) 29 2-4.5 長期突觸可塑性(Long term plasticity) 31 2-5 人工神經網路(Artificial Neural Network) 33 2-5.1 全連接層深度學習人工神經網路架構與原理 33 2-5.2 儲備池運算(Reservoir Computing)架構與原理 36 第三章 實驗方法與步驟 39 3-1 實驗材料與相關製程設備 39 3-1.1 實驗相關藥品 39 3-1.2 金屬電極電子束蒸鍍源 39 3-1.3 氧化物陶瓷濺鍍靶材 39 3-1.4 磁控濺鍍通入氣體 40 3-1.5 實驗用基板 40 3-1.6 射頻磁控濺鍍製程設備 (RF Magnetron Sputter) 41 3-1.7 電子束蒸鍍金屬 42 3-1.8 旋轉塗佈機 (Spin coater) 42 3-2 實驗步驟 43 3-2.1 矽基板切割與清洗 43 3-2.2 藥品配置 43 3-2.3 雙閘極鐵電高分子耦合氧化物薄膜電晶體元件製程 43 3-3 分析儀器 45 3-3.1 表面粗度儀 (Alpha-step Profilometer) 45 3-3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 46 3-3.3 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 47 3-3.4 低掠角X光繞射儀 (Grazing Incident Angle X-Ray Diffractometer, GIAXRD) 48 3-3.5 紫外光-可見光-近紅外光學儀(UV-Vis-NIR Spectrum) 49 3-3.6 X射線光電子能譜儀(XPS) 50 3-3.7 紫外光電子能譜儀(UPS) 51 3-3.8 半導體元件參數分析儀 52 第四章 結果與討論 53 4-1 元件疊層與命名 53 4-2 元件材料性質分析 55 4-2.1 HR-TEM、SAED與EDS縱深元素分析 55 4-2.2 P(VDF-TrFE) SEM表面分析 58 4-2.3 GIXRD 結晶分析 60 4-2.4 UV-VIS-NIR光學性質分析氧化銦鎵鋅薄膜能隙 62 4-2.5 氧化銦鎵鋅薄膜X射線光電子能譜(XPS) 64 4-2.6 鐵電高分子P(VDF-TrFE)遲滯曲線分析 67 4-3 元件電性分析 70 4-3.1 TFT I-V transfer curve、output curve和電流變化機制討論 70 4-4 元件施加電脈衝刺激反應 78 4-4.1 連續電脈衝刺激反應與短期可塑性到長期可塑性轉換 78 4-4.2 連續電脈衝刺激之增強與抑制行為 85 4-4.3 連續電脈衝調整通道電導行為應用於類神經網路(ANN) 91 4-4.4 成對脈衝行為模仿(Paired-Pulse Facilitation, PPF) 94 4-4.5 儲備池運算(Reservoir computing)時序訊號量測 98 4-5 各文獻比較 105 結論 106 參考文獻 108

    (1) Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1 (1), 22-29. DOI: 10.1038/s41928-017-0006-8.
    (2) Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo, H.-J.; Qian, H.; Wu, H. Neuro-inspired computing chips. Nat. Electron. 2020, 3 (7), 371-382. DOI: 10.1038/s41928-020-0435-7.
    (3) Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 2012, 24 (22), 2945-2986. DOI: 10.1002/adma.201103228.
    (4) Shang, Z.-W.; Hsu, H.-H.; Zheng, Z.-W.; Cheng, C.-H. Progress and challenges in p-type oxide-based thin film transistors. Nanotechnol. Rev. 2019, 8 (1), 422-443. DOI: 10.1515/ntrev-2019-0038.
    (5) Wager, J. F.; Keszler, D. A.; Presley, R. E. Transparent electronics; Springer, 2008. DOI: Not available.
    (6) Thomas, S. R.; Pattanasattayavong, P.; Anthopoulos, T. D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem. Soc. Rev. 2013, 42 (16), 6910-6923. DOI: 10.1039/c3cs35402d.
    (7) Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5 (1), 4289. DOI: 10.1038/ncomms5289.
    (8) Jin, T.; Mao, J.; Gao, J.; Han, C.; Loh, K. P.; Wee, A. T.; Chen, W. Ferroelectrics-Integrated Two-Dimensional Devices toward Next-Generation Electronics. ACS Nano 2022, 16 (9), 13595-13611. DOI: 10.1021/acsnano.2c07281.
    (9) Qi, L.; Ruan, S.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33 (13), 2005098. DOI: 10.1002/adma.202005098.
    (10) Huang, H.-H.; Wu, T.-Y.; Chu, Y.-H.; Wu, M.-H.; Hsu, C.-H.; Lee, H.-Y.; Sheu, S.-S.; Lo, W.-C.; Hou, T.-H. A comprehensive modeling framework for ferroelectric tunnel junctions. In 2019 IEEE International Electron Devices Meeting (IEDM), 2019; IEEE: pp 32.32. 31-32.32. 34. DOI: 10.1109/IEDM19573.2019.8993592.
    (11) Zacharaki, C.; Chaitoglou, S.; Siannas, N.; Tsipas, P.; Dimoulas, A. Hf0. 5Zr0. 5O2-based germanium ferroelectric p-FETs for nonvolatile memory applications. ACS Appl. Electron. Mater. 2022, 4 (6), 2815-2821. DOI: 10.1021/acsaelm.2c00324.
    (12) Majumdar, S.; Chen, B.; Qin, Q. H.; Majumdar, H. S.; van Dijken, S. Electrode Dependence of Tunneling Electroresistance and Switching Stability in Organic Ferroelectric P(VDF-TrFE)-Based Tunnel Junctions. Adv. Funct. Mater. 2018, 28 (15), 1703273. DOI: 10.1002/adfm.201703273.
    (13) Jin, L.; Li, F.; Zhang, S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 2014, 97 (1), 1-27. DOI: 10.1111/jace.12773.
    (14) Hu, W. J.; Juo, D.-M.; You, L.; Wang, J.; Chen, Y.-C.; Chu, Y.-H.; Wu, T. Universal Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films. Sci Rep 2014, 4 (1), 4772. DOI: 10.1038/srep04772.
    (15) Spampinato, N.; Maiz, J.; Portale, G.; Maglione, M.; Hadziioannou, G.; Pavlopoulou, E. Enhancing the ferroelectric performance of P (VDF-co-TrFE) through modulation of crystallinity and polymorphism. Polymer 2018, 149, 66-72. DOI: 10.1016/j.polymer.2018.06.072.
    (16) Werbos, P. J. Backpropagation through time: what it does and how to do it. Proc. IEEE 1990, 78 (10), 1550-1560. DOI: 10.1109/5.58337.
    (17) Doblado, L. R.; Martínez-Ramos, C.; Pradas, M. M. Biomaterials for Neural Tissue Engineering. Front. nanotechnol. 2021, 3, Review. DOI: 10.3389/fnano.2021.643507.
    (18) Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W. C.; LaMantia, A.-S.; McNamara, J. O.; Williams, S. M. Neuroscience, 3rd ed. Sinauer Associates, 2004; pp 62-120.
    (19) Li, J.; Yang, Y.-H.; Chen, Q.; Zhu, W.-Q.; Zhang, J.-H. Aqueous-solution-processed proton-conducting carbon nitride/polyvinylpyrrolidone composite electrolytes for low-power synaptic transistors with learning and memory functions. J. Mater. Chem. C 2020, 8 (12), 4065-4072. DOI: 10.1039/C9TC05765J.
    (20) Han, C.; Han, X.; Han, J.; He, M.; Peng, S.; Zhang, C.; Liu, X.; Gou, J.; Wang, J. Light-Stimulated Synaptic Transistor with High PPF Feature for Artificial Visual Perception System Application. Adv. Funct. Mater. 2022, 32 (22), 2113053. DOI: 10.1002/adfm.202113053.
    (21) Kim, M.-K.; Lee, J.-S. Ferroelectric Analog Synaptic Transistors. Nano Lett. 2019, 19 (3), 2044-2050. DOI: 10.1021/acs.nanolett.9b00180.
    (22) Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1 (6), 333-343. DOI: 10.1038/s41928-018-0092-2.
    (23) Zhu, X.; Wang, Q.; Lu, W. D. Memristor networks for real-time neural activity analysis. Nat. Commun. 2020, 11 (1), 2439. DOI: 10.1038/s41467-020-16261-1.
    (24) Zhong, Y.; Tang, J.; Li, X.; Gao, B.; Qian, H.; Wu, H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021, 12 (1), 408. DOI: 10.1038/s41467-020-20692-1.
    (25) Mao, D.; Gnade, B. E.; Quevedo-Lopez, M. A. Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer. Ferroelectrics-Physical Effects 2011, 78-100. DOI: 10.5772/17147.
    (26) Suresh, A.; Muth, J. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 2008, 92 (3), 033502. DOI: 10.1063/1.2824758.
    (27) Conley, J. F. Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors. IEEE Trans. Device Mater. Reliab. 2010, 10 (4), 460-475. DOI: 10.1109/tdmr.2010.2069561.
    (28) Ide, K.; Nomura, K.; Hosono, H.; Kamiya, T. Electronic Defects in Amorphous Oxide Semiconductors: A Review. Phys. Status Solidi A 2019, 216 (5). DOI: 10.1002/pssa.201800372.
    (29) Du, C.; Cai, F.; Zidan, M. A.; Ma, W.; Lee, S. H.; Lu, W. D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8 (1), 2204. DOI: 10.1038/s41467-017-02337-y.
    (30) Kim, D.; Jeon, Y. R.; Ku, B.; Chung, C.; Kim, T. H.; Yang, S.; Won, U.; Jeong, T.; Choi, C. Analog Synaptic Transistor with Al-Doped HfO(2) Ferroelectric Thin Film. ACS Appl. Mater. Interfaces 2021. DOI: 10.1021/acsami.1c12735.
    (31) Jin, T.; Zheng, Y.; Gao, J.; Wang, Y.; Li, E.; Chen, H.; Pan, X.; Lin, M.; Chen, W. Controlling Native Oxidation of HfS(2) for 2D Materials Based Flash Memory and Artificial Synapse. ACS Appl. Mater. Interfaces 2021, 13 (8), 10639-10649. DOI: 10.1021/acsami.0c22561.
    (32) Yu, R.; Li, E.; Wu, X.; Yan, Y.; He, W.; He, L.; Chen, J.; Chen, H.; Guo, T. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2020, 12 (13), 15446-15455. DOI: 10.1021/acsami.9b22925.
    (33) Monalisha, P.; Kumar, A. P. S.; Wang, X. R.; Piramanayagam, S. N. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2022, 14 (9), 11864-11872. DOI: 10.1021/acsami.1c19916.
    (34) Kim, S.; Heo, K.; Lee, S.; Seo, S.; Kim, H.; Cho, J.; Lee, H.; Lee, K. B.; Park, J. H. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz. 2021, 6 (2), 139-147. DOI: 10.1039/d0nh00559b.
    (35) Jang, S.; Jang, S.; Lee, E. H.; Kang, M.; Wang, G.; Kim, T. W. Ultrathin Conformable Organic Artificial Synapse for Wearable Intelligent Device Applications. ACS Appl. Mater. Interfaces 2018, 11 (1), 1071-1080. DOI: 10.1021/acsami.8b12092.

    無法下載圖示 校內:2028-08-07公開
    校外:2028-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE