簡易檢索 / 詳目顯示

研究生: 葉科里
Yeh, Ko-Li
論文名稱: 微流道混合指標數的實驗與計算模擬之研究
Experimental and Computational Analysis of Mixing Index in a Microchannel
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 54
中文關鍵詞: 微流道液體混合檢驗重金屬汞離子鉛離子
外文關鍵詞: Microchannel, Mixing Index, Detection of heavy metals, Fluid mixing
相關次數: 點閱:51下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自工業革命以來,越來越多的汙染物隨著科技的發展被釋放到地球上來,水汙染是全球性的問題,在眾多水汙染中對人體最嚴重的就屬重金屬離子了。縱使人類從環境或魚類中接觸到重金屬是非常微量的,然而經年累月長時間接觸下來,也會因為重金屬在人體中有累積性而損害人體,因此檢測重金屬一直是一個被重視的課題。
    由於檢驗重金屬在傳統的儀器需要專業的人員以及大量的耗材,例如X射線螢光光譜(X-ray Fluorescence Spectrometer, XRF)、電感耦合等離子體質譜(Inductively Coupled Plasma Mass Spectrometry, ICP-MS)等等,這些專業的儀器通常價格昂貴或是不是每實驗室都有,如需使用必須借用或者是租用。而微流道由於其體積小、消耗試劑少、方便、以及操作容易為研究所歡迎。而除了檢測重金屬之外,微流體晶片在其他生物醫學檢測例如檢測血液、蛋白質中也有很好的發展。
    本實驗為了證明適體與金屬離子能完全混合,使用一個被動式的微流道系統,其微流道設計兩入口寬度0.6 mm、高度0.15 mm、長度10 mm,流道截面寬度為0.6 mm、高度0.15 mm,流道體積扣掉入口流道為總混合體積為7.34 mm3。實驗結果並與COMSOL Multiphysics模擬結果進行比較,由於本實驗觀察的顏色為整體流道深度之垂直平均,固在模擬結果也必須依照相同條件,把整個流道深度的結果統整在流道表面。最後實驗與數據模擬兩者的結果高度的相符,在出口端最高的誤差都在3%以下,驗證了此晶片可以達到良好的混合效果。

    關鍵字: 微流道、液體混合、檢驗重金屬、汞離子、鉛離子

    Water pollution seriously affects human health. Detection of water quality is thus important to human survival. Human exposure to heavy metal ions from the environment is inevitable. However, heavy metals can accumulate in the human body and harm it. Thus, detecting heavy metal ions in water is one of the major targets for improving the environment. Different from traditional instruments requiring professional machines such as X-ray fluorescence spectrometers (XRFs) or inductively coupled plasma mass spectrometers (ICP-MSs), etc., microfluidic devices, which are fast and convenient and have low sample requirements and good sensitivity, can be used for this purpose. They reduce costs and also reduce the need for reaction reagents.
    In this study, our team designed a mixing microfluidic channel and used it to perform mixing experiments. The numerical simulation and the mixing experiment were used to calculate the mixing index of the microfluidic channel, and the simulation and experimental results obtained using COMSOL software showed that the mixing index was higher than 90% at flow rates of 1 (μl/min), 3 (μl/min), and 5 (μl/min) and higher than 85% at flow rates of 8 (μl/min), and 10 (μl/min). The mixing index was higher than 85% at a flow rate of 8 (μl/min) and higher than 77% at a flow rate of 10 (μl/min). In addition, the simulated mixing index was in good agreement with the experimental results, where the average difference for each flow rate was less than 5%.

    Keywords: Microchannel, Mixing Index, Detection of heavy metals, Fluid mixing

    摘要 II 致謝 XII 目錄 XIII 圖目錄 XV 表目錄 XVII 符號說明 XVIII 簡寫表 XX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 環境重金屬簡介及檢測技術 2 1.3 微流體在重金屬與其他檢測中的優勢 5 1.4 微流道簡介 7 1.5 實驗室使用的微流體晶片 9 1.6 研究架構 11 第二章 實驗材料與方法 12 2.1 化學藥品 12 2.2 溶液配置 13 2.3 微流道晶片之結構 15 2.4實驗儀器與設備 17 第三章 微流道之混合 23 3.1 微流道混合實驗架構 23 3.2 微流道混合 24 3.3 微流道內的擴散計算 25 3.4 微流道裝置的混合指標數 27 3.5 從ImageJ計算微流道裝置的混合指標數方法 29 第四章 流體混合計算模擬分析和實驗量測 31 4.1 理論模型 31 4.2 數值建模 32 4.3 網格收斂測試 36 4.4 實驗與模擬比較 37 4.5 檢測金屬離子螢光實驗之驗證 48 第五章 結論與未來展望 50 參考文獻 51

    1. Houghton, J., Global warming. Reports on Progress in Physics. 68(6): p. 1343(2005)
    2. Duruibe, J.O., M. Ogwuegbu, and J. Egwurugwu, Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences. 2(5): p. 112-118(2007)
    3. Wang, Q. and Z. Yang, Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution. 218: p. 358-365(2016)
    4. Kampa, M. and E. Castanas, Human health effects of air pollution. Environmental Pollution. 151(2): p. 362-367(2008)
    5. Saljnikov, E., V. Mrvić, D. Čakmak, D. Jaramaz, V. Perović, S. Antić-Mladenović, and P. Pavlović, Pollution indices and sources appointment of heavy metal pollution of agricultural soils near the thermal power plant. Environmental Geochemistry and Health. 41(5): p. 2265-2279(2019)
    6. Harris, J.M., Global institutions and ecological crisis. World Development. 19(1): p. 111-122(1991)
    7. Jacob, J.M., C. Karthik, R.G. Saratale, S.S. Kumar, D. Prabakar, K. Kadirvelu, and A. Pugazhendhi, Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of Environmental Management. 217: p. 56-70(2018)
    8. Schaider, L.A., D.B. Senn, E.R. Estes, D.J. Brabander, and J.P. Shine, Sources and fates of heavy metals in a mining-impacted stream: temporal variability and the role of iron oxides. Science of the Total Environment. 490: p. 456-466(2014)
    9. Wuana, R.A. and F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices. 2011(2011)
    10. Roberts, T.L., Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering. 83: p. 52-59(2014)
    11. Tchounwou, P.B., C.G. Yedjou, A.K. Patlolla, and D.J. Sutton, Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology: p. 133-164(2012)
    12. Shamuyarira, K.K. and J.R. Gumbo, Assessment of heavy metals in municipal sewage sludge: a case study of Limpopo Province, South Africa. International Journal of Environmental Research and Public Health. 11(3): p. 2569-2579(2014)
    13. Organization, W.H., Guidelines for safe recreational water environments: Coastal and fresh waters. Vol. 1. 2003: World Health Organization.
    14. Tokimoto, T., N. Kawasaki, T. Nakamura, J. Akutagawa, and S. Tanada, Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science. 281(1): p. 56-61(2005)
    15. Feng, L., H. Li, L.-Y. Niu, Y.-S. Guan, C.-F. Duan, Y.-F. Guan, C.-H. Tung, and Q.-Z. Yang, A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta. 108: p. 103-108(2013)
    16. Bolisetty, S., M. Peydayesh, and R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews. 48(2): p. 463-487(2019)
    17. Chouhan, B., P. Meena, and N. Poonar, Effect of heavy metal ions in water on human health. International Journal of Scientific and Engineering Research. 4: p. 2015-7(2016)
    18. Dadhaniya, P.V., A.M. Patel, M.P. Patel, and R.G. Patel, A new cationic poly [1-vinyl-3-ethyl imidazolium iodide], P (VEII) hydrogel for the effective removal of chromium (VI) from aqueous solution. Journal of Macromolecular Science®, Part A: Pure and Applied Chemistry. 46(4): p. 447-454(2009)
    19. Cadevall, M., J. Ros, and A. Merkoçi, Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor. Electrophoresis. 36(16): p. 1872-1879(2015)
    20. Chaiyo, S., O. Chailapakul, and W. Siangproh, Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection–anodic stripping voltammetry. Analytica Chimica Acta. 852: p. 55-62(2014)
    21. Choi, S.-M., D.-M. Kim, O.-S. Jung, and Y.-B. Shim, A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide. Analytica Chimica Acta. 892: p. 77-84(2015)
    22. Alizadeh, T. and S. Amjadi, Preparation of nano-sized Pb2+ imprinted polymer and its application as the chemical interface of an electrochemical sensor for toxic lead determination in different real samples. Journal of Hazardous Materials. 190(1-3): p. 451-459(2011)
    23. Combellas, C., F. Kanoufi, J. Pinson, and F.I. Podvorica, Sterically hindered diazonium salts for the grafting of a monolayer on metals. Journal of the American Chemical Society. 130(27): p. 8576-8577(2008)
    24. Andrews, R.W. and D.C. Johnson, Voltammetric deposition and stripping of selenium (IV) at a rotating gold-disk electrode in 0.1 M perchloric acid. Analytical Chemistry. 47(2): p. 294-299(1975)
    25. Bansod, B., T. Kumar, R. Thakur, S. Rana, and I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors and Bioelectronics. 94: p. 443-455(2017)
    26. Sajed, S., F. Arefi, M. Kolahdouz, and M. Sadeghi, Improving sensitivity of mercury detection using learning based smartphone colorimetry. Sensors and Actuators B: Chemical. 298: p. 126942(2019)
    27. Lefevre, F., A. Chalifour, L. Yu, V. Chodavarapu, P. Juneau, and R. Izquierdo, Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab on a Chip. 12(4): p. 787-793(2012)
    28. Cui, P. and S. Wang, Application of microfluidic chip technology in pharmaceutical analysis: A review. Journal of Pharmaceutical Analysis. 9(4): p. 238-247(2019)
    29. Farshidfar, N. and S. Hamedani, The potential role of smartphone-based microfluidic systems for rapid detection of COVID-19 using saliva specimen. Molecular Diagnosis & Therapy. 24(4): p. 371-373(2020)
    30. Kim, M., J.W. Lim, H.J. Kim, S.K. Lee, S.J. Lee, and T. Kim, Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosensors and Bioelectronics. 65: p. 257-264(2015)
    31. Subramanian, V., S. Lee, S. Jena, S.K. Jana, D. Ray, S.J. Kim, and P. Thalappil, Enhancing the sensitivity of point-of-use electrochemical microfluidic sensors by ion concentration polarisation–A case study on arsenic. Sensors and Actuators B: Chemical. 304: p. 127340(2020)
    32. Date, Y., S. Terakado, K. Sasaki, A. Aota, N. Matsumoto, H. Shiku, K. Ino, Y. Watanabe, T. Matsue, and N. Ohmura, Microfluidic heavy metal immunoassay based on absorbance measurement. Biosensors and Bioelectronics. 33(1): p. 106-112(2012)
    33. Motalebizadeh, A., H. Bagheri, S. Asiaei, N. Fekrat, and A. Afkhami, New portable smartphone-based PDMS microfluidic kit for the simultaneous colorimetric detection of arsenic and mercury. RSC Advances. 8(48): p. 27091-27100(2018)
    34. Wu, R.Y., A Microfluidic Device for Detecting Mercury (II) and Lead (II) Ions Based on Graphene Oxide by Aptasensor, National Cheng Kung University Department of Engineering Science for Master Thesis, (2020).
    35. Liu, C.-W., T.-C. Tsai, M. Osawa, H.-C. Chang, and R.-J. Yang, Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Analytica Chimica Acta. 1033: p. 137-147(2018)
    36. Ono, A. and H. Togashi, Highly selective oligonucleotide‐based sensor for mercury (II) in aqueous solutions. Angewandte Chemie. 116(33): p. 4400-4402(2004)
    37. Miyake, Y., H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, and T. Fujimoto, MercuryII-mediated formation of thymine− HgII− thymine base pairs in DNA duplexes. Journal of the American Chemical Society. 128(7): p. 2172-2173(2006)
    38. Zheng, Y., C. Yang, F. Yang, and X. Yang, Real-time study of interactions between cytosine–cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry. Analytical Chemistry. 86(8): p. 3849-3855(2014)
    39. Liu, G., Z. Li, J. Zhu, Y. Liu, Y. Zhou, and J. He, Studies on the thymine–mercury–thymine base pairing in parallel and anti-parallel DNA duplexes. New Journal of Chemistry. 39(11): p. 8752-8762(2015)
    40. Squires, T.M. and S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics. 77(3): p. 977(2005)
    41. Oddy, M.H., J.G. Santiago, and J.C. Mikkelsen, Electrokinetic instability micromixing. Analytical Chemistry. 73(24): p. 5822-5832(2001)
    42. Bau, H.H., J. Zhong, and M. Yi, A minute magneto hydro dynamic (MHD) mixer. Sensors and Actuators B: Cchemical. 79(2-3): p. 207-215(2001)
    43. Wang, L., J.-T. Yang, and P.-C. Lyu, An overlapping crisscross micromixer. Chemical Engineering Science. 62(3): p. 711-720(2007)
    44. Hou, H.-H., Y.-N. Wang, C.-L. Chang, R.-J. Yang, and L.-M. Fu, Rapid glucose concentration detection utilizing disposable integrated microfluidic chip. Microfluidics and Nanofluidics. 11(4): p. 479-487(2011)
    45. Fu, L.-M., W.-J. Ju, C.-H. Tsai, H.-H. Hou, R.-J. Yang, and Y.-N. Wang, Chaotic vortex micromixer utilizing gas pressure driving force. Chemical Engineering Journal. 214: p. 1-7(2013)
    46. Warhaft, Z., An introduction to thermal-fluid engineering: the engine and the atmosphere. 1997: Cambridge University Press.
    47. Ren, K., J. Zhou, and H. Wu, Materials for microfluidic chip fabrication. Accounts of Chemical Research. 46(11): p. 2396-2406(2013)
    48. Nge, P.N., C.I. Rogers, and A.T. Woolley, Advances in microfluidic materials, functions, integration, and applications. Chemical Reviews. 113(4): p. 2550-2583(2013)
    49. Ren, K., J. Zhou, and H. Wu, Materials for microfluidic chip fabrication. Accounts of Chemical Research. 46(11): p. 2396-2406(2013)
    50. Li, Y., Y. Xu, X. Feng, and B.-F. Liu, A rapid microfluidic mixer for high-viscosity fluids to track ultrafast early folding kinetics of G-quadruplex under molecular crowding conditions. Analytical Chemistry. 84(21): p. 9025-9032(2012)
    51. Das, S.S., S.D. Tilekar, S.S. Wangikar, and P.K. Patowari, Numerical and experimental study of passive fluids mixing in micro-channels of different configurations. Microsystem Technologies. 23(12): p. 5977-5988(2017)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE