| 研究生: |
羅易平 Luo, Yi-Ping |
|---|---|
| 論文名稱: |
鉍銅硒氧薄膜製備及結構分析 Fabrication and structural characterization of BiCuSeO thin films |
| 指導教授: |
齊孝定
Qi, Xiao-ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | BiCuSeO 、鉍銅硒氧 、溶膠凝膠法 、脈衝雷射沉積法 、射頻磁控濺鍍法 |
| 外文關鍵詞: | BiCuSeO, Sol-gel method, PLD, Sputtering |
| 相關次數: | 點閱:185 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目標為製備鉍銅硒氧(BiCuSeO)薄膜,並期望鉍銅硒氧薄膜能以磊晶的方式成長至(001)鈦酸鍶單晶基板上。我們嘗試以溶膠凝膠法、脈衝雷射沉積法、射頻磁控濺鍍法,三種不同薄膜製備方式合成、沉積鉍銅硒氧薄膜;而脈衝雷射沉積及射頻磁控濺鍍所用的靶材之製備方式也將於內文中詳盡討論。
在溶膠凝膠法製程中,我們嘗試不同條件最後成功配置含Bi、Cu、Se元素之 sol-gel溶液,隨後在不同氣氛下對塗佈在矽基板上的sol-gel薄膜進行熱處理。然而在熱處理過程中發現薄膜中的Bi、Se元素相當容易揮發,特別是Se元素,會於溶膠溶液逐漸蒸乾的過程中先行揮發,導致成分嚴重偏離化學計量比,無法形成BiCuSeO相。
以脈衝雷射沉積法沉積BiCuSeO薄膜,實驗結果顯示雷射能量密度需大於0.65 J/cm2以上才可將各元素依靶材比例沉積於基板上,而基板溫度為400˚C時較適合BiCuSeO薄膜成長。如若要薄膜形成BiCuSeO相,雷射能量密度需再提高至0.90~1.80 J/cm2,且薄膜亦會隨雷射能量密度提高而變得緻密。於SrTiO3基板上成長之BiCuSeO薄膜,雷射能量密度需達到1.50 J/cm2才可形成(001)之擇優取向,但薄膜中含有其他雜相。此外,經霍爾效應量測得知BiCuSeO薄膜電導率約介於102~103 S×m-1之間。
利用射頻磁控濺鍍法沉積BiCuSeO薄膜,最初以製程壓力50 mtorr、功率60~80W沉積薄膜,但發現鍍率過快(23.3~31.6 nm/min)不利於磊晶成長。將功率降低至30W(即減少鍍率),基板溫度設置在300~500˚C之間沉積BiCuSeO薄膜,但所得薄膜之成分嚴重偏離化學計量比。進而降低製程壓力至10 mTorr,而功率則稍增至40W,發現於基板溫度100~350˚C範圍皆可形成BiCuSeO相。濺鍍於SrTiO3基板之薄膜其結構會隨基板溫度變化,常溫時為非晶結構,100˚C時開始出現BiCuSeO相且有(110)擇優取向,150˚C時BiCuSeO薄膜擇優取向更趨明顯,而200˚C~300˚C時擇優取向則變差,350˚C時BiCuSeO薄膜完全退化為多晶隨機取向。由霍爾效應量測可知薄膜皆為P-type,電導率約為10~103 S×m-1,其中以150˚C沉積於SrTiO3基板之薄膜電導率最高,可能因其有最佳(110)擇優取向所致。對(110)擇優取向薄膜進行精密X射線繞射分析,發現薄膜在基板平面有兩組不同晶粒取向,即薄膜晶粒之[001]方向大約分別平行於基板之[110]和[1 ̅10]方向,兩組晶粒取向之間夾角為90˚。
In this study, the growth of BiCuSeO (BCSO) films on Si and (001) SrTiO3 substrates was attempted by a number of techniques, including sol-gel, pulse laser deposition (PLD) and RF magnetron sputtering. The growth with sol-gel technique was unsuccessful due to the preferential losses of Bi and Se during the sintering process of the coated gel films. In the PLD growth, the films of BCSO phase were obtained when the substrate temperature was set at 400 C and the laser fluence between 0.90~1.80 J/cm2. The porosity of the deposited films was found to decrease as the laser fluence increased. For the BCSO films grown on SrTiO3, a preferred (001) texture was developed when the fluence was increased to 1.50 J/cm2, although the films also contained some secondary phases. The conductivity of the PLD grown BCSO films was measured to be 102~103 Sm-1. The sputtering growth was carried out in Ar atmosphere. The BCSO films could be grown with the following sputtering parameters: Ar pressure 10 mTorr, sputter power 40W, and substrate temperature 100~350C. The microstructures and textures of the films grown on SrTiO3 varied significantly with the substrate temperature. The films grown at room temperature was amorphous, while those grown at 100C showed the desired BCSO phase with a preferred (110) orientation. The increase of substrate temperature to 150˚C led to a better (110) texture. However, further increase of the substrate temperature to 200~300C resulted in the degradation of the (110) texture and the texture disappeared at 350C. High-resolution X-ray analysis indicated that the (110) textured films consisted of two in planed orientations with the films [001] axis roughly parallels to the substrates [110] and [1 ̅10] axes, respectively, i.e. the two in-plane orientations had a relative angle of 90. All the BCSO films grown by sputtering were confirmed to be P-type by the Hall-effect measurement with the conductivity being 101~103 Sm-1. The films grown on SrTiO3 at 150 C showed the highest conductivity, presumably due to their high degree of (110) texture.
1. W. J. Lin, W. C. Chang, and X. D. Qi, 'Exchange Bias and Magneto-Resistance in an All-Oxide Spin Valve with Multi-Ferroic BiFeO3 as the Pinning Layer', Acta Materialia, 61 (2013), 7444-7453.
2. R. Ramesh, Thin Film Ferroelectric Materials and Devices. Vol. 3, Springer Science & Business Media, (2013).
3. N. A. Spaldin, and M. Fiebig, 'The Renaissance of Magnetoelectric Multiferroics', Science, 309 (2005), 391-392.
4. M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, 'Ferroelectricity in a Pure BiFeO3 Ceramic', Applied Physics Letters, 76 (2000), 2764-2766.
5. J. R. Teague, R. Gerson, and W. J. James, 'Dielectric Hysteresis in Single Crystal BiFeO3', Solid State Communications, 8 (1970), 1073.
6. 林蔚叡, 博士論文, '以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之研究', 成功大學材料科學及工程學系 (2014).
7. A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh, and B. A. Popovkin, 'New Layered Compounds with the General Composition (Mo) (Cuse), Where M=Bi, Nd, Gd, Dy, and BiOCuS - Syntheses and Crystal-Structure', Journal of Solid State Chemistry, 112 (1994), 189-191.
8. Y. Liu, L. D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D. B. Liu, W. Xu, Y. H. Lin, and C. W. Nan, 'Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO Via a Dual-Doping Approach', Advanced Energy Materials, 6 (2016), 9.
9. A. P. Richard, J. A. Russell, A. Zakutayev, L. N. Zakharov, D. A. Keszler, and J. Tate, 'Synthesis, Structure, and Optical Properties of BiCuOCh (Ch=S, Se, and Te)', Journal of Solid State Chemistry, 187 (2012), 15-19.
10. L. D. Zhao, J. Q. He, D. Berardan, Y. H. Lin, J. F. Li, C. W. Nan, and N. Dragoe, 'BiCuSeO Oxyselenides: New Promising Thermoelectric Materials', Energy & Environmental Science, 7 (2014), 2900-2924.
11. A. Zakutayev, P. F. Newhouse, R. Kykyneshi, P. A. Hersh, D. A. Keszler, and J. Tate, 'Pulsed Laser Deposition of BiCuOSe Thin Films', Applied Physics a-Materials Science & Processing, 102 (2011), 485-92.
12. X. L. Wu, J. L. Wang, H. R. Zhang, S. F. Wang, S. J. Zhai, Y. G. Li, D. Elhadj, and G. S. Fu, 'Epitaxial Growth and Thermoelectric Properties of c-axis Oriented
13. Bi1-xPbxCuSeO Single Crystalline Thin Films', Crystengcomm, 17 (2015), 8697-8702.
14. G. Y. Yan, L. Wang, S. Qiao, X. L. Wu, S. F. Wang, and G. S. Fu, 'Light-Induced Transverse Voltage Effect in c-axis Inclined BiCuSeO Single Crystalline Thin Films', Optical Materials Express, 6 (2016), 558-565.
15. X. L. Wu, L. J. Gao, P. Roussel, E. Dogheche, J. L. Wang, G. S. Fu, and S. F. Wang, 'Growth of c-axis-Oriented BiCuSeO Thin Films Directly on Si Wafers', Journal of the American Ceramic Society, 99 (2016), 3367-3370.
16. C. B. Chrisey, G. K. Hubler, 'Pulsed Laser Deposition of Thin Films', (1994).
17. I. Hilmi, E. Thelander, P. Schumacher, J. W. Gerlach, and B. Rauschenbach, 'Epitaxial Ge2Sb2Te5 Films on Si(111) Prepared by Pulsed Laser Deposition', Thin Solid Films, 619 (2016), 81-85.
18. Y. Li, L. M. Wong, C. C. Yu, S. Wang, P. C. Su, 'Pulsed Laser Deposition of Ba0.5Sr0.5Co0.8Fe0.2O3 − Δ Thin Film Cathodes for Low Temperature Solid Oxide Fuel Cells', Surface and Coatings Technology, 320 (2017), 344-348.
19. J. Bruncko, P. Sutta, M. Netrvalova, M. Michalka, A. Vincze, J. Kovac, 'Comparative Study of ZnO Thin Film Prepared by Pulsed Laser Deposition - Comparison of Influence of Different Ablative Lasers', Vacuum, 138 (2017), 184-90.
20. H. Kalhori, S. B. Porter, A. S. Esmaeily, M. Coey, M. Ranjbar, and H. Salamati, 'Morphology and Structural Studies of WO3 Films Deposited on SrTiO3 by Pulsed Laser Deposition', Applied Surface Science, 390 (2016), 43-49.
21. Y. Li, L. M. Wong, H. Xie, S. Wang, and P. C. Su, 'Pulsed Laser Deposition of Epitaxial MgO Buffer Layer for Proton-Conducting Ceramic Electrolytes', Surface and Coatings Technology, 320 (2017), 339-343.
22. H. Li, Z. Xu, Z. Wu, J. Sun, J. Wu, and N. Xu, 'Effects of the Experimental Conditions on the Growth of Crystalline NiCx Nanorods Via Pulsed Laser Deposition Accompanied by N2 Annealing', Applied Surface Science, 403 (2017), 670-676.
23. S. A. Sajjadi, F. Saba, A. Ghadirzadeh, and F. Di Fonzo, 'Synthesis of TiC Coating on Ti Substrate Using Pulsed Laser Deposition and Mechanical Milling Techniques Along with Statistical Modeling of the Process by Response Surface Methodology', Powder Technology, 305 (2017), 704-713.
24. K. Antonova, L. Duta, A. Szekeres, G. E. Stan, I. N. Mihailescu, M. Anastasescu, H. Stroescu, and M. Gartner, 'Influence of Laser Pulse Frequency on the Microstructure of Aluminum Nitride Thin Films Synthesized by Pulsed Laser Deposition', Applied Surface Science, 394 (2017), 197-204.
25. P. Tang, B. Li, L. Feng, L. Wu, J. Zhang, W. Li, G. Zeng, W. Wang, and C. Liu, 'Structural, Electrical and Optical Properties of AlSb Thin Films Deposited by Pulsed Laser Deposition', Journal of Alloys and Compounds, 692 (2017), 22-25.
26. M. Womack, M. Vendan, and P. Molian, 'Femtosecond Pulsed Laser Ablation and Deposition of Thin Films of Polytetrafluoroethylene', Applied Surface Science, 221 (2004), 99-109.
27. Y. Liu, L. D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D. B. Liu, W. Xu, Y. H. Lin, C. W. Nan, 'Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach' Advanced Energy Materials, 6, (2016), 1502423
校內:2022-06-30公開