簡易檢索 / 詳目顯示

研究生: 許家齊
Hsu, Chia-Chi
論文名稱: 姬蝴蝶蘭花部發育PeMADS基因啟動子之選殖及分析
Identification and characterization of promoter regions of PeMADS genes in Phalaenopsis equestris
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 71
中文關鍵詞: 啟動子姬蝴蝶蘭GUSCArG boxPeMADS genes
外文關鍵詞: Phalaenopsis equestris, GUS, CArG box, PeMADS genes, Promoter
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物界中,蘭花是高度演化的一群,目前已有多達3萬種以上,其花朵與授粉者的共演化現象是許多學者的研究對象,其花部形成的複雜性亦是許多模式植物所無法達到。本實驗室蔡文杰學長於先前從台灣的原生種姬蝴蝶蘭(P. equestris)找到五個有關花部發育的B群MADS box基因,其中四個屬於AP3-like基因,PeMADS2, PeMADS3, PeMADS4和 PeMADS5,另外一個為PI-like基因,PeMADS6。這五個基因可分別在蝴蝶蘭的不同花器中表現,調控不同花器的形成。
    在我的研究中,為了知道這些PeMADS基因是如何在空間上被限制在特定花器中的表現,我利用過去本實驗室巫佩珊學姐所選殖到的基因啟動子全長PeMADS2有3.2 kb,PeMADS3有1.3 kb,PeMADS6有1.5 kb的啟動子長度及我自己所選殖的PeMADS4和PeMADS5的啟動子序列使之達到3.3 kb及2.1 kb的長度,並分析這些啟動子上受到上游轉錄因子直接結合、調控的CArG box序列。在各啟動子的功能分析上,將各基因啟動子的5’端進行連續刪除並將之接到GUS報導基因之前端,以基因槍送入白花蝴蝶蘭花苞中作暫時性的表現,藉著GUS基因的表現來推斷前端各基因不同長度片段的啟動子是否具有啟動基因表現之功能。在PeMADS2啟動子分析上,具有最短啟動子長度的pBI-Pe2pF1 (300 bp)已有使GUS表現在各花器的功能,並有負向調控基因在花瓣及唇瓣中表現的序列存在(-786~-300)與正向調控基因表現在花瓣(-1,312~-786)及唇瓣(-3,224~-2,232)的序列存在,此與PeMASD2在過去利用北方雜合法的表現模式相符。在PeMADS3的啟動子分析上,具有最短啟動子長度的pBI-Pe3pF1 (107 bp)完全沒有GUS表現在各花器上,而調控GUS表現在花萼、花瓣與唇瓣的序列存在於-565~-107之間,調控在合蕊柱中的表現的序列則存在於-1,007~-565之中,此與PeMASD3在過去利用北方雜合法的表現模式不完全相符,過去指出PeMADS3主要在花瓣和唇瓣中表現。在PeMADS4啟動子分析上,具有最短啟動子長度的pBI-Pe4pF1 (309 bp)已可使GUS表現在花萼、花瓣和唇瓣中,主要增強在唇瓣表現的序列存在於-871~-309之間,在合蕊柱則幾乎完全沒有GUS的表現,此與PeMASD4在過去利用北方雜合法的表現模式不相符,過去指出PeMADS4只在唇瓣和合蕊柱中表現。在PeMADS5啟動子分析上,具有調控GUS基因在花萼、花瓣(-123~0)、唇瓣與合蕊柱(-442~-123)表現的功能,在-866~-442及-442~-123區域具有增加GUS在花萼及花瓣中表現的功能,此與PeMASD5在過去利用北方雜合法的表現模式不完全相符,過去指出PeMADS5主要在花瓣中表現,在花萼及唇瓣中僅有少量表現。在PeMADS6啟動子分析上,具有最短啟動子長度的pBI-Pe6pF1 (206 bp)可使GUS在各花器中表現,在-506~-206的序列會減弱GUS 在各花器中表現而在-806~-506及-1,106~-806之間的序列則能促進GUS在各花器中的表現。此與PeMASD6在過去利用北方雜合法的表現模式相符,在各花器中都有表現。
    為了進一步比較各刪除啟動子片段在驅動GUS表現量的差異,我以GUS螢光測定方式(GUS fluorometric assay)來進行GUS表現的定量,在對PeMADS4啟動子的定量分析顯示在最短啟動子長度的pBI-Pe4pF1 (206 bp)可使GUS在各花器中表現,在-2,249~-1,433的序列之間具有增加表現的功能。在對PeMADS6啟動子的定量分析顯示在最短啟動子長度的pBI-Pe6pF1 (206 bp)可使GUS在各花器中表現,在序列-806~-506之間具有抑制GUS 在唇瓣中表現的功能而在序列-1,515~-1,106之間則會促進在唇瓣中的表現。在這研究中的結果可以作為未來以蘭花花苞作暫時性表現的實驗設計,並且在所分析得到的各啟動子片段在各花器表現的功能,亦可做為未來進一步深入研究其中與上游調控分子直接結合的序列位置及組成,對於花部發育時期基因表現的調控將提供莫大的貢獻。

    The complex flower organization of orchids offers an opportunity to discover new variant genes and different levels of complexity in the morphogenesis of flowers. Previously, our lab has identified five B-class of MADS box genes from a native Phalaenopsis equestris, including four AP3-like genes (PeMADS2, PeMADS3, PeMADS4, PeMADS5), and a PI-like PeMADS6. Differential expression profiles of these genes are detected in various floral organs, suggesting their distinctive roles in the floral morphogenesis of orchids.
    To dissect the spatial and temporal regulation mechanisms of these PeMADS genes, promoter deletion assay was carried out to verify the controlling cis-elements. In this study, I have isolated and sequenced 3.3-kb and 2.1-kb of sequence 5’ to the PeMADS4 and PeMADS5, respectively, from the BAC clones of P. equestris by DNA walking. Together with the 3.2-kb PeMADS2 promoter, the 1.3-kb PeMADS3 promoter and the 1.5-kb PeMADS6 promoter sequences obtained previously by Pei-Shan Wu (2003), serial deletion fragments of PeMADS promoter regions were cloned and fused to the GUS reporter gene encoding ß-glucuronidase and assayed for their transient expression in various floral organs in the white orchid flower buds. In the PeMADS2 promoter analysis, the pBI-Pe2pF1 (300 bp) was sufficient for PeMADS2 expression in all floral organs of P. equestris. The region between nucleotide -786 and -300 were responsible for the reduced expression in petal and lip and the regions between nucleotide -1,312 to -786, -2,232 to -1,823, and -3,224 to -2,232 had the ability to overcome the repression effect. These results were consistent with the expression patterns of the PeMAD2 assayed by northern blotting. In the PeMADS3 promoter analysis, the region between nucleotide -565 to -107 of PeMADS3 promoter sequence may required for PeMADS3 expression at sepal, petal, and lip. The region between nucleotide -1,007 and -565 activated PeMADS3 expression at column. These results were inconsistent with the northern blotting analysis for the PeMADS3, which was mainly expressed in petal and lip, fewer in column, but not in sepal. In the PeMADS4 promoter, the pBI-Pe4pF1 (309 bp) was sufficient for PeMADS4 expression at the basal level at sepal, petal, and lip. More GUS expression at lip was driven by the region from nucleotide -871 to -309 of PeMADS4 promoter. These results were inconsistent with the northern assay which showed PeMADS4 mainly expresses at lip and column, but not at sepal and petal. In the PeMADS5 promoter, the pBI-Pe5pF1 (123 bp) showed GUS expression at sepal and petal, and the promoter region between nucleotide -442 to -123 make higher expression at petal, and basal expression at lip and column. The region between nucleotide -1,508 to -1,054 had the negative effect and the region between nucleotide -2,062 to -1,508 had the positive effect for GUS expression at sepal. The strong GUS expression at petal by both pBI-Pe5pF3 and pBI-Pe5pF6 constructs was consistent with the northern blot assay. In the PeMADS6 promoter analysis, the pBI-Pe6pF1 (206 bp) was sufficient for PeMADS6 expression in P. equestris. The region between nucleotide -506 to -206 showed negative effect for the GUS expression and the regions between nucleotide -806 to -506 and -1,106 to -806 showed positive effects for the GUS expression at all floral organs, respectively. My results were consistent to the expression pattern of PeMADS6 assayed by northern blotting.
    In order to quantify the GUS experiment for various deletion clones of promoter sequences, GUS fluorometric activity assay was performed. In the PeMADS4 promoter analysis by GUS fluorometric assay, the regions from nucleotide -309 to 1 and from nucleotide -2,249 to -1,433 of PeMADS4 promoter sequence showed the basal activity and the enhancing effects for the GUS expression, respectively. In the PeMADS6 promoter analysis, I noticed that the pBI-Pe6pF1 (206 bp) was sufficient for PeMADS6 expression and the region between nucleotide -806 to -506 had the repressed effect for the GUS expression at lip and the region between nucleotide -1,515 to -1,106 had the enhanced effect for the GUS expression at lip. These results can give a model for the study using floral buds as a transient expression host, and the functional analysis of these PeMADS promoters can serve a flower-specific, even floral organs-specific model in this kind of study. These results can also contribute to the study about the flower morphology and to investigate the regulatory pathway between each gene participating in flower development.

    Contents 中文摘要 i Abstract iii Contents v List of Tables viii List of Figures ix List of Appendix Figures xi 1. Introduction 1 1.1 Phalaenopsis species 1 1.2. Control of the floral organ development in plants 1 1.2.1 ABC model 1 1.2.2 ABC genes in Arabidopsis thaliana and Antirrhinum majus 1 1.2.3 Modified ABC model in Liliaceae family 2 1.3. MADS-box genes and their proteins 2 1.3.1 MADS-box genes 2 1.3.2 MADS-box genes are highly conserved in planta 2 1.4. Previous study of the promoter of AP3 and PI gene 3 1.4.1 Expression pattern and control of the AP3 and PI gene 3 1.4.2 Previous study of AP3 promoter 3 1.4.3 Previous study of PI promoter 4 1.5. PeMADS genes and floral organs development in Phalaenopsis 4 1.5.1 PeMADS2~PeMADS6 genes 4 1.5.2 Expression patterns of PeMADS2~6 genes in P. equestris 4 1.6. Preliminary study of the five PeMADS gene promoters in our laboratory 5 1.6.1 Previously isolated PeMADS2~6 promoter sequence 5 1.6.2 Analysis of CArG box in PeMADS2~PeMADS6 promoter 5 1.7 Study of the gene transformation in plant 5 2. Purpose 7 3. Materials and Methods 8 3.1 Plant materials and growth conditions 8 3.2 Isolation of PeMADS2-6 promoter regions by using DNA walking 8 3.3 Sequence analysis 8 3.4 Isolation of PeMADS3~5 promoter sequence from BAC library 9 3.5 Construction of chimeric reported gene fusions 10 3.6 Transient transformation by particle bombardment 10 3.7 GUS histochemical assays 11 3.8 GUS fluorometric activity assays 11 4. Results 13 4.1 Cloning and sequence analysis of the PeMADS3~5 promoter regions 13 4.1.1 Cloning the PeMADS3 promoter sequence from the BAC clones 13 4.1.2 Cloning the PeMADS4 promoter sequence from the BAC clones 13 4.1.3 Cloning the PeMADS5 promoter sequence from the BAC clones 14 4.1.4 Detection of CArG box among the promoter regions of PeMADS2~PeMADS6 14 4.2 Transient expression of the GUS reporter gene driven by the serial deletions of PeMADS2~PeMADS6 promoter sequence in the white floral buds 15 4.2.1 Functional analysis of the serial deletions of PeMADS2 promoter sequence 16 4.2.2 Functional analysis of the serial deletions of PeMADS3 promoter sequence 17 4.2.3 Functional analysis of the serial deletions of PeMADS4 promoter sequence 18 4.2.4 Functional analysis of the serial deletions of PeMADS5 promoter sequence 19 4.2.5 Functional analysis of the serial deletions of PeMADS6 promoter sequence 21 4.3 Analysis of transient expression of the serial deletion clones of PeMADS4 and PeMADS6 promoter sequences by using GUS fluorometric assay 22 4.3.1 Functional analysis of the serial deletion clones of PeMADS4 promoter sequence by using GUS fluorometric assay 22 4.3.2 Functional analysis of the serial deletion clones of PeMADS6 promoter sequence by using GUS fluorometric assay 23 5. Discussion 25 5.1 Functional analysis of the promoter sequence of the five PeMADS genes by using transient expression system 25 5.2 Inconsistent results of promoter activities analyzed by GUS staining and their expression patterns in planta 26 5.3 Inconsistent results of promoter activities between GUS fluorometric assay and GUS staining assay 27 5.4 Different CArG boxes may have impacts on differential expression of PeMADS genes 29 6. Reference 32 Tables 35 Figures 43 Appendix figures 67

    Ahlandsberg, S., Sun, C. and Jansson, C. (2002) An intronic element directs endosperm-specific expression of the sbellb gene during barley seed development. Plant Cell Rep. 20:864–868
    Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. (1992) Complementry floral homeotic phenotypes result from opposite orientations of a transposon at the Plena locus of Antirrhinum. Cell 72:85-95
    Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254
    Christenson, E.A. (2001) Phalaenopsis: a monograph. Timber Press, Portland, OR, pp. 19-34
    Clarke, B.C. and Appels, R. (1998) A transient assay for evaluating promoters in wheat endosperm tissue. Genome 41:865–871
    Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. and Sommer, H. (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15:4330-4343
    Deyholos, M.K. and Sieburth, L.E. (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799-1810
    Dolan, J.W. and Fields, S. (1991) Cell-type-specific transcription in yeast. Biochim. Biophys. Acta 1088:155-169
    Godon, C., Caboche, M and Daniel-Vedele, F. (1993) Transient plant gene expression: a simple and reproducible method based on flowing particle gun. Biochimie. 75:591–595
    Gomez-Mena, C., de Folter, S., Costa, M.M., Angenent, G.C. and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429-438
    Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Dev. 8:1548-1560
    Hasebe, M., Wen, C.K., Kato, M. and Banks, J.A. (1998) Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proc. Natl. Acad. Sci. USA 95:6222-6227
    Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A. and Irish, V.F. (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711-1721
    Honma, T. and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021-2030
    Huang, X.F., Nguyen-Quoc, B., Seguin, A. and Yelle, S. (1998) Tissue-specificity of maize sucrose synthase gene promoters in maize tissues after particle bombardment. Euphytica 103:17–21
    Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H. and Sommer, H. (1992) Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene Squamusa in Antirrhinum majus. EMBO J. 11:1239-1249
    Hwang, Y.S., Ciceri, P., Parsons, R.L., Moose, S.P., Schmidt, R.J. and Huang, N. (2004) The maize O2 and PBF proteins act additively to promote transcription from storage protein gene promoters in rice endosperm cells. Plant Cell Physiol. 45:1509–1518
    Jack, T., Brockman, L.L. and Meyerowitz, E.M. (1992) The homeotic gene APETALA3 of Arabidopsis thaniana encodes a MADS box and is expressed in petals and stamens. Cell 68:683-697
    Jack, T., Fox, G.L. and Meyerowitz, E.M. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703-716
    Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387-405
    Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: β-glucuronidase as sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901-3907
    Joersbo, M., Brunstedt, J., Marcussen, J. and Okkels, F.T. (1999) Transformation of the endospermous legume guar (Cyamopsis tetragonoloba L.) and analysis of transgene transmission. Mol. Breed 5:521–529
    Jofuku, K.D., den Boer, B.G.W., Van Montagu, M. and Okamuro, J.K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225
    Kanno, A., Saeki, H., Kameya, T., Saedler, H. and Theissen, G. (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology 52:831-841
    Kluth, A., Sprunck, S., Becker, D., Lorz, H. and Lutticke, S. (2002) 5' deletion of a gbss1 promoter region from wheat leads to changes in tissue and developmental specificities. Plant Mol. Biol. 49:669–682
    Knudsen, S. and Muller, M. (1991) Transformation of the developing barley endosperm by particle bombardment. Planta 185:330–336
    Lamb, R.S., Hill, T.A., Tan, Q.K. and Irish, V.F. (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079-2086
    Levin, J.Z. and Meyerowitz, E.M. (1995) UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7:529-548
    Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5:484-495
    Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALAI. Nature 360:273-277
    Matsuo, N., Minami, M., Maeda, T. and Hiratsuka, K. (2001) Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol. 18:71–75
    Muller, M. and Knudsen, S. (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J. 4:343–355
    Ng, M. and Yanofsky, M.F. (2001) Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2:186-195
    Ono, S., Tanaka, T., Watakabe, Y. and Hiratsuka, K. (2004) Transient assay system for the analysis of PR-1a gene promoter in tobacco BY-2 cells. Biosci. Biotechnol. Biochem. 68:803–807
    Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259-1269
    Samach, A., Kohalmi, S.E., Motte, P., Datla, R. and Haughn, G.W. (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9:559-570
    Sanford, J.C., Smith, F.D. and Russell, J.A. (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483-509
    Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lönnig, W.E., Saedler, H. and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11:251-263
    Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H. and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum mujus: the protein shows homology to transcription factors. EMBO J. 9:605-613
    Tang, W. and Perry S.E. (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J. Biol. Chem. 278:28154-28159
    Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim, J.T., Münster, T., Winter, K.U. and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115-149
    Tilly, J., Allen, D.W. and Jack, T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647-1657
    Treisman, R. (1992) The serum response element. Trends Biochem. Sci. 17:423-426
    Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonning, W., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1992) GLOBOSA – A homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11:4693-4704
    Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H. and Chen, H.H. (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45:831-844
    Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H. and Chen, H.H. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, correlated with flower longevity and ovary development. Plant Cell Physiol. 46:1125-1139
    van Tunen, A.J., Eikelboom, W. and Angenent, G.C. (1993) Floral organogenesis in Tulipa. Flowering Newsl. 16:33–37
    Weigel, D. and Meyerowitz, E.M. (1993) Genetic hierarchy controlling flower development. In: Bernfeld M (ed.), Molecular Basis of Morphogenesis, pp. 91–105. John Wiley, New York.
    Wu, P.S. and Chen, H.H. (2003) Identification and characterization of promoter of PeMADS genes in Phalaenopsis equestris. Master thesis in the Department of Life Sciences, NCKU
    Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors. Nature 346:35-39
    Yu, H. and Goh, C.J. (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiology 123:1325-1336
    Zachgo, S., de Andra Silva, E., Motte, P., Trobner, W., Saedler, H. and Schwarz-Sommer, Z. (1995) Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121:2861-2875

    下載圖示 校內:2012-08-31公開
    校外:2017-08-31公開
    QR CODE