| 研究生: |
吳立洋 Wu, Li-Yang |
|---|---|
| 論文名稱: |
神經壞死病毒非結構性蛋白B2抑制肺癌細胞及胰臟癌細胞自噬作用及誘導細胞死亡機制探討 Mechanisms of nervous necrosis virus nonstructural protein B2-inhibited autophagy and induced cell death in lung cancer cells and pancreatic cancer cells |
| 指導教授: |
洪健睿
Hong, Jiann-Ruey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 非小細胞肺腺癌細胞 、胰臟癌細胞 、非結構性蛋白B2 、自噬作用 、細胞死亡 、蛋白質藥物 |
| 外文關鍵詞: | Lung adenocarcinoma cells, Pancreatic cancer cells, Nonsructural protein B2, Autophgy, Cell death, Protein drugs |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經壞死病毒在感染初期可表現非結構性蛋白B2,之前研究發現B2在肺癌細胞株中可誘導p53途徑的細胞凋亡,在p53缺失肺癌細胞株中則會導致ROS/RIP3途徑的細胞壞死,同時皆可抑制自噬作用。本研究第一部分欲探討B2對癌症細胞株造成細胞死亡的過程中,自噬作用所扮演的可能角色。研究中將B2轉染至p53缺失的肺癌細胞株H1299及胰臟癌細胞株KKPP中,以腎臟胚胎細胞株HEK293T作為正常細胞對照組,測試B2作用下自噬的變化。結果顯示B2增加p53缺失癌細胞的氧化壓力,使其走向壞死,且不影響正常細胞。B2會造成p53缺失癌細胞AMPK/ULK1 Ser555路徑的自噬抑制,腎胚細胞ATG5及Beclin1起始路徑的自噬作用增加,p53缺失癌細胞中自噬作用抑制的趨緩可能使癌細胞走向壞死,腎胚細胞則藉由自噬作用提升調節B2對細胞造成的壓力。第二部分則製備重組蛋白B2,探討B2蛋白在EGFR變異肺癌小鼠模式肺癌細胞毒殺能力與自噬調控分析,結果發現蛋白質藥物B2可減少腫瘤重量並抑制腫瘤生長,降低癌症指標基因表達,促進癌細胞自噬作用、細胞壞死與內源性細胞凋亡,顯示重組蛋白B2可作為治療癌症的潛力藥物。
The betanodavirus express non-structural protein B2 in early infection. The previous study shows that protein B2 induces p53-mediated apoptosis pathway in lung cancer cells and ROS/RIP3- pathway necrosis in p53 negative lung cancer cells, both of which inhibit autophagy. In first part, the roles of autophagy in B2-induced cell death in cancer cells would be explored in this study. Transfection of B2 is used in p53 deletion lung cancer cell line, H1299, and pancreatic cancer cell lines, KKPP, to detect the influences of autophagy under B2 treatment. The embryonic kidney cells, HEK293T, are used as normal cells control group. Results showed that B2 reducd cell viability, triggered necropotsis and oxidative stress in p53-deletion cancer cells, but not in embryonic kidney cells. B2 inhibited autophagy via AMPK/ULK1 S555 pathway in p53-deletion cancer cells, but increased autophagy via ATG5 and Beclin1 initiation pathway in embryonic kidney cell line. The reduction of autophagy inhibition might lead to necroptosis in p53-deletion cancer cells. The evaluation of autophagy in embryonic kidney cells might manipulate the stress under B2 treatment. In second part, protein B2 were produced as recombinant protein. The mouse EGFR mutant lung cancer model would be used for in vivo test, investigating the autophagy regulation and toxicity of protein B2 in cancer cells in vivo. Results showed that protein drug B2 decreased tumor weights, induced tumor growth inhibition and presented lower cancer marker gene expression. The autophagy, necroptosis and intrinsic apoptosis were enhanced in cancer cells in vivo after protein drug B2 treatmemt. Protein B2 can be regarded as potential drug for cancer treatment.
Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology 32, 2-11, 2011.
Ashkenazi, A., and Salvesen, G. Regulated cell death: signaling and mechanisms. Annual Review of Cell and Developmental Biology 30, 337-356, 2014.
B’Chir, W., Maurin, A., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Research 41, 7683-7699, 2013.
Bensaad, K., Cheung, E.C., and Vousden, K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. The European Molecular Biology Organization Journal 28, 3015-3026, 2009.
Bernerd, F., Sarasin, A., and Magnaldo, T. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proceedings of the National Academy of Sciences of the United States of America 96, 11329-11334, 1999.
Bieging, K.T., Mello, S.S., and Attardi, L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nature Reviews Cancer 14, 359-370, 2014.
Blake, M.S., Johnston, K.H., Russell-Jones, G.J., and Gotschlich, E.C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Analytical Biochemistry 136, 175-179, 1984.
Bovo, G., Nishizawa, T., Maltese, C., Borghesan, F., Mutinelli, F., and Mas, S.D. Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Research 63, 143-146, 1999.
Bozhkov, P.V. Plant autophagy: mechanisms and functions. Journal of Experimental Botany 69, 1281-1285, 2018.
Breuil, G., Bonami, J.R., Pepin, J.F., and Pichot, Y. Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax) larvae and juveniles. Aquaculture 97, 109-116, 1991.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 303, 1532-1535, 2004.
Brumatti, G., Salmanidis, M., and Ekert, P.G. Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cellular and Molecular Life Sciences 67, 1619-1630, 2010.
Budanov. A.V. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxidants and Redox Signaling 15, 1679-1690, 2010.
Bursac, S., Brdovcak, M.C., Donati, G., and Volarevic, S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1842, 817-830, 2014.
Cain, K., Bratton, S.B., and Cohen, G.M. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203-214, 2002.
Cecconi, F., and Levine, B. The role of autophagy in mammalian development. Developmental Cell 15, 344-357, 2009.
Chao, J.A., Lee, J.H., Chapados, B.R., Debler, E.W., Schneemann, A., and Williamson, J.R. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nature Structural and Molecular Biology 12, 952-957, 2005.
Chen, L.J., Su, Y.C., and Hong, J.R. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication
cycle in fish cells. Virology 385, 444-454, 2009.
Chi, S.C., Shieh, J.R., and Lin, S.J. Genetic and antigenic analysis ofbetanodaviruses isolated from aquatic organisms in Taiwan. Diseases of Aquatic Organisms 55, 221-228, 2003.
Chiu, H.W., Su, Y.C., and Hong, J.R. Betanodavirus B2 protein triggers apoptosis and necroptosis in lung cancer cells that suppresses autophagy. Oncotarget 8, 94129-94141, 2017.
Choi, Y., Bowman, J.W., and Jung, J.U. Autophagy during viral infection-a double-edged sword. Nature Reviews Microbiology 16, 341-354, 2018.
Cicchini, M., Karantza, V., and Xia, B. Molecular pathways: autophagy in cancer-a matter of timing and context. Clinical Cancer Research 21, 498-504, 2014.
Cookson, B.T., and Brennan, M.A. Pro-inflammatory programmed cell death. Trends in Microbiology 9, 113–114, 2001.
Crighton, D., Wilkinson, S., and Ryan, K.M. DRAM links autophagy to p53 and programmed cell seath. Autophagy 3, 72-74, 2007.
D’Arcy, M. Cell Death: A review of the major forms of Apoptosis, Necrosis and Autophagy. Cell Biology International 43, 582-592, 2019.
David, K.K., Andrabi, S.A., Dawson, T.M, and Dawson, V.L. Parthanatos, a messenger of death. Frontiers in Bioscience 14, 1116-1128, 2009.
De Duve, C., and Wattiaux, R. Functions of Lysosomes. Annual Review of Physiology 28, 435-492, 1966.
Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, J., Moskowitz, M.A., and Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology 1, 112-119, 2005.
Delbridge, A.R.D., Grabow, S., Strasser, A., and Vaux, D.L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer 16, 99-109, 2016.
Denton, D., and Kumar, S. Autophagy-dependent cell death. Cell Death and Differentiation 26, 605-616, 2018.
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., and Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072, 2012.
El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825, 1993.
Feng, Z. p53 Regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harbor Perspectives in Biology 2, a001057, 2009.
Fenner, B. J., Goh, W., and Kwang, J. Sequestration and protection of double-stranded RNA by the betanodavirus B2 protein. Journal of Virology 80, 6822-6833, 2006.
Franko, J., Pomfy, M., and Prosbova, T. Apoptosis and cell death (mechanisms, pharmacology and promise for the future). Acta Medica (Hradec. Kralove) 43, 63-68, 2000.
Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D, Agostinis, p., Alnemri, E.S., Altucci, L., and Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation 25, 486-541, 2018.
Galluzzi, L., Vitale, I., Abrams, J.M., Alnemri, E. S., Baehrecke, E.H., Blagosklonny, M.V., Dawson, T.M., Dawson, V.L., and Kroemer, G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation 19, 107-120, 2011.
Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., and Jiang, X. Ferroptosis is an autophagic cell death process. Cell Research 26, 1021-1032, 2016.
Gao, W., Shen, Z., Shang, L., and Wang, X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death abd Differentiation 18, 1598-1607, 2011.
Glazebrook, J.S., Heasman, M.P., and de Beer, S.W. Picorna-like viral particles associated with mass mortalities in larval barramundi, Lates calcarifer Bloch. Journal of Fish Diseases 13, 245-249, 1990.
Glick, D., Barth, S., and Macleod, K.F. Autophagy: cellular and molecular mechanisms. The Journal of Pathology 221,3-12, 2010.
Gross, S.M., and Rotwein, P. Mapping growth-factor-modulated Akt signaling dynamics. Journal of Cell Science 129, 2052-2063, 2016.
Gump, J.M., Staskiewicz, L., Morgan, M.J., Bamberg, A., Riches, D.W.H., and Thorburn, A. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nature Cell Biology 16, 47-54, 2013.
Hardie, D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology 8, 774-785, 2007.
Hardie, D.G., and Carling, D. The AMP-activated protein kinase-fuel gauge of the mammalian cell? European Journal of Biochemistry 46, 259-273, 1997.
Harnett, M.M., Pineda, M.A., Latré de Laté, P., Eason, R.J., Besteiro, S., Harnett, W., and Langsley, G. From Christian de Duve to Yoshinori Ohsumi:
More to autophagy than just dining at home. Biomedical Journal 40, 9-22, 2017.
Harrison, P.T., Vyse, S., and Huang, P. H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Seminars in Cancer Biology 61, 167-179, 2019.
He, C., and Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics 43, 67-93, 2009.
He, L., He, T., Farrar, S., Ji, L., Liu, T., and Ma, X. Antioxidants maintain cellular redox homeostasis by Elimination of reactive oxygen species. Cellular Physiology and Biochemistry 44, 532-553, 2017.
He, S., Liang, Y., Shao, F., and Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proceedings of the National Academy of Sciences of the United States of America 108, 20054-20059, 2011.
He, W., Wang, Q., Srinivasan, B., Xu, J., Padilla, M.T., Li, Z., Wang, X., Liu, Y., Gou, X., Shen, H.M., Xing, C., and Lin, Y. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene 33, 3004-3013, 2013.
Hemmings, B.A., and Restuccia, D.F. PI3K-PKB/Akt Pathway. Cold Spring Harbor Perspectives in Biology 4, a011189, 2012.
Herzig, S., and Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nature Reviews Molecular Cell Biology 19, 121-135, 2017.
Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B., and Tschopp, J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology 1, 489-495, 2000.
Holze, C., Michaudel, C., Mackowiak, C., Haas, D. A., Benda, C., Hubel, P.,
and Pichlmair, A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nature Immunology 19, 130-140, 2017.
Hong, W., Wu, Q., Zhang, J., and Zhou, Y. Prognostic value of EGFR 19‑del and 21‑L858R mutations in patients with non‑small cell lung cancer. Oncology Letters 18, 3887-3895, 2019.
Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A., and Feng, Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America 107, 7455-7460, 2010.
Hussain, S.P., Amstad, P., He, P., Robles, A., Lupold, S., Kaneko, I., Ichimiya, M., Sengupta, S., Mechanic, L., Okamura, S., Hofseth, L.J., Moake, M., Nagashima, M., Forrester, K.S., and Harris, C.C. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Research 64, 2350-2356, 2004.
Italiano, D., Lena, A.M., Melino, G., and Candi, E. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 11, 4589-4596, 2012.
Iwamoto, T., Mise, K., Takeda, A., Okinaka, Y., Mori, K., Arimoto, M., Okuno, T., and Nakai, T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. Journal of General Virology 86, 2807-2816, 2005
Joo, S.T., Kauffman, R.G., Kim, B.C., and Park, G.B. The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Science 52, 291-297, 1999.
Julien, O., and Wells, J. A. Caspases and their substrates. Cell Death and Differentiation 24, 1380-1389, 2017.
Kain, S.R., Mai, K., and Sinai, P. Human multiple tissue western blots: a new immunological tool for the analysis of tissue-specific protein expression.
BioTechniques 17, 982-987, 1994.
Kastan, M.B. Onyekwere, O., Sidransky, D., Vogelstein, B., and Cr aig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Research 51, 6304-6311, 1991.
Kato, K., Ogura, T., Kishimoto, A., Minegishi, Y., Nakajima, N., Miyazaki, M., and Esumi, H. Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21, 6082-6090, 2002.
Kenzelmann Broz, D., Spano Mello, S., Bieging, K.T., Jiang, D., Dusek, R., Brady, C.A., Sidow, A., and Attardi, L.D. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes and Development 27, 1016-1031, 2013.
Kerr, J.F.R., Wyllie, A.H., and Currie, A.R. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. British Journal of Cancer 26, 239-257, 1972.
Kim, J., Kim, Y. C., Fang, C., Russell, R.C., Kim, J.H., Fan, W., and Guan, K.L. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303, 2013.
Kortlever, R.M., Higgins, P.J., and Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nature Cell Biology 8, 877-884, 2006.
Laderoute, K.R., Amin, K., Calaoagan, J.M., Knapp, M., Le, T., Orduna, J., and Viollet, B. 5’-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Molecular and Cellular Biology 26, 5336-5347, 2006.
Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680-685, 1970.
Lane, D.P. Cancer. p53, guardian of the genome. Nature 358, 15-16, 1992.
Levine, B., and Yuan J. Autophagy in cell death: an innocent convict? Journal of Clinical Investigation 115, 2679-2688, 2005.
Levy, J.M. and Thorburn, A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacology and Therapeutics 131, 130-141, 2011.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489, 1997.
Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin1. Nature 402, 672-676, 1999.
Lin, W.C., Chuang, Y.C., Chang, Y.S., Lai, M.D., Teng, Y.N., Su, I.J., Wang, C.C.C., Lee, K.H., and Hung, J.H. Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS One 7, e39120, 2012.
Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of double-stranded RNA recognition. European Molecular Biology Organization Reports 6, 1149-1155, 2005.
Linkermann, A., Stockwell, B. R., Krautwald, S., and Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nature Reviews Immunology 14, 759-767, 2014.
Liu, B., Bhatt, D., Oltvai, Z.N., Greenberger, J.S., and Bahar, I. Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Scientific Reports 4, 6245, 2014.
Liu, C., Liang, B., Wang, Q., Wu, J., and Zou, M.H. Activation of AMP-activated protein kinase α1 alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. Journal of Biological Chemistry 285, 15346-15355, 2010.
Liu, J., Xia, H., Kim, M., Xu, L., Li, Y., Zhang, L., Cai, Y., Norberg, H.N., Zhang, T., Furuya, T., Jin, M., Zhu, Z., Wang, H., Yu, J., Li, Y., Hao, Y., Choi, A., Ke, H., Ma, D., and Yuan, J. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147, 223-234, 2011.
Liu, X., Chhipa, R.R., Nakano, I., and Dasgupta, B. The AMPK inhibitor Compound C is a potent AMPK-independent antiglioma agent. Molecular Cancer Therapeutics 13, 596-605, 2014.
Liu, X., Kim, C.N. and Yang, J., Jemmerson, R., and Wang, X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86, 147-157, 1996.
Liu, Y., Shoji-Kawata, S., Sumpter, R.M., Wei, Y., Ginet, V., Zhang, L., and Levine, B. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proceedings of the National Academy of Sciences of the United States of America 110, 20364-20371, 2013.
Lowe, S.W. Activation of p53 by oncogenes. Endocrine-Related Cancer 6, 45-48, 1999.
MacKinnon, M.R. Rearing and growth of larval and juvenile Barramundi (Lates calcarifer) in Queensland. Paper presented at: Management of wild and cultured sea bass/barrumundi (Lates calcarifer). Australian Centre for International Agricultural Research 20, 148-153, 1988.
Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., and Kroemer, G. Functional and physical interaction between Bcl-XL and a BH3 like domain in Beclin-1. The European Molecular Biology Organization Journal 26, 2527-2539, 2007.
Mariño, G., Niso-Santano, M., Baehrecke, E. H., and Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology 15, 81-94, 2014.
Martinvalet, D., Zhu, P., Lieberman, J., and Granzyme, A. induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22, 355-370, 2005.
Mihaylova, M.M., and Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology 13, 1016-1023, 2011.
Mizushima, N. Autophagy: process and function. Genes and Development 21, 2861-2873, 2007.
Mori, K.I., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-371, 1992.
Mrakovcic, M., and Fröhlich, L.F. p53-Mediated Molecular Control of Autophagy in Tumor Cells. Biomolecules 8, 14, 2018.
Munday, B.L., Kwang, J., and Moody, N. Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases 25, 127-142, 2002.
Nagai, T., and Nishizawa, T. Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. The Journal of General Virology 80, 3019-3022, 1999.
Noda, T., Fujita, N., and Yoshimori, T. The late stages of autophagy: how does the end begin? Cell Death and Differentiation 16, 984-990, 2009.
Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., and Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677-681, 2005
Overholtzer, M., Mailleux, A.A., Mouneimne, G., Normand, G., Schnitt, S.J., King, R.W., and Brugge, J.S. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966-979, 2007.
Parzych, K.R., and Klionsky, D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxidants and Redox Signaling 20, 460-473, 2014.
Pasparakis, M., and Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311-320, 2015.
Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., and Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin1-dependent autophagy. Cell 122, 927-939, 2005.
Pierotti, M.A., Berrino, F., Gariboldi, M., Melani, C., Mogavero, A., Negri, T., Pasanisi, P., and Pilotti, S. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 32, 1475-1487, 2012.
Poillet-Perez, L., Despouy, G., Delage-Mourroux, R., and Boyer-Guittaut, M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biology 4, 184-192, 2015.
Politi, K, Zakowski, M.F., Fan, P.D., Schonfeld, E.A, Pao, W., and Varmus, H.E. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes and Development 20, 1496-1510, 2006.
Poon, I.K., Lucas, C.D., Rossi, A.G., and Ravichandran, K.S. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology 14, 166-180, 2014.
Rodbard, D., and Chrambach, A. Estimation of molecular radius, free mobility, and valence using polyacrylamide gel electrophoresis. Analytical Biochemistry 40, 95-134, 1971.
Roos, W. P., Thomas, A. D., and Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer 16, 20-33, 2015.
Rosenbluth, J.M., and Pietenpol, J.A. mTOR regulates autophagy-associated genes downstream of p73. Autophagy 5, 114-116, 2009.
Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E., and Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nature Medicine 11, 1306-1313, 2005.
Samani, A.A., Yakar, S., LeRoith, D., and Brodt, P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocrine Reviews 28, 20-47, 2007.
Schneemann, A., Reddy, V., and Johnson, J.E. The structure and function of nodavirus particles: a Paradpm for understanding chemical biology. Advances in Virus Research 50, 381-446, 1998.
Schultze, S.M., Hemmings, B.A., Niessen, M., and Tschopp, O. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Reviews in Molecular Medicine 14, e1, 2012.
Shaw, P., Bovey, R., Tardy, S., Sahli, R., Sordat, B., and Costa, J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proceedings of the National Academy of Sciences of the United States of America 89, 4495-4499, 1992.
Shen, S., Kepp, O., Michaud, M., Martins, I., Minoux, H., Métivier, D., and Kroemer, G. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30, 4544-4556, 2011.
Shi, Y., Nikulenkov, F., Zawacka-Pankau, J., Li, H., Gabdoulline, R., Xu, J., Eriksson, S., Hedström, E., Issaeva, N., Kel, A., Arnér, E.S.J., and Selivanova, G. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death and Differentiation 21, 612-623, 2014.
Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Tsunematsu, H., Miyagi, T., and Hayashi, N. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. International Journal of Cancer 131, 548-557, 2011.
Shmelkov, S.V., Butler, J.M., Hooper, A.T., Hormigo, A., Kushner, J., Milde, T., Clair, R.S., Baljevic, M., White, I., Jin, D.K., Chadburn, A., Murphy, A.J., Valenzuela, D.M., Gale, N.W., Thurston, G., Yancopoulos, G.D., D'Angelica, M., Kemeny, N., Lyden, D., and Rafii, S. CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation 118, 2111-2120, 2008.
Song, X., Zhu, S., Xie, Y., Liu, J., Sun, L., Zeng, D., and Tang, D. JTC801 induces pH-dependent death specifically in cancer cells and slows growth of tumors in mice. Gastroenterology 154, 1480-1493, 2018.
Stoscheck, C.M. Quantitation of protein. Methods in Enzymology 182, 50-68, 1990.
Su, Y.C., and Hong, J.R. Betanodavirus B2 causes ATP depletion-induced cell death via mitochondrial targeting and complex II inhibitionin in vitro and in vivo. Journal of Biological Chemistry 285, 39801-39810, 2010.
Su, Y.C., Chiu, H.W., Hung, J.C., and Hong, J.R. Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting. Apoptosis 19, 1457-1470, 2014.
Su, Y.C., Wu, J.L., and Hong, J.R. Betanodavirus non-structural protein B2: A
novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 385, 143-154, 2009.
Suzuki, A., Shijubo, N., Yamada, G., Ichimiya, S., Satoh, M., Abe, S., and Sato, N. Napsin A is useful to distinguish primary lung adenocarcinoma from adenocarcinomas of other organs. Pathology - Research and Practice 201, 579-586, 2005.
Tait, S.W., and Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology 11, 621-632, 2010.
Tan, C., Huang, B., Chang, S.F., Ngoh, G.H., Munday, B., Chen, S.C., and Kwang, J. Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. Journal of General Virology 82, 647-653, 2001.
Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., and Kroemer, G. The molecular machinery of regulated cell death. Cell Research 29, 347-364, 2019.
Tasdemir, E., Maiuri, M.C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., Criollo, A., Morselli, E., Zhu, C., Harper, F., Nannmark, U., and Kroemer, G. Regulation of autophagy by cytoplasmic p53. Nature Cell Biology 10, 676-687, 2008.
Tennant, J.R. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2, 685-694, 1964.
Thorburn, A., Thamm, D.H., and Gustafson, D.L. Autophagy and cancer therapy. Molecular Pharmacology 85, 830-838, 2014.
Tichelaar, J.W., Lu, W., and Whitsett, J.A. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. Journal of Biological Chemistry 275, 11858-11864, 2000.
Toufektchan, E., and Toledo, F. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers 10, 135, 2018.
Tsukada, M., and Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. Federation of European Biochemical Societies Letters 333, 169-174, 1993.
Upton, J.W., Kaiser, W.J., and Mocarski, E.S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host and Microbe 11, 290-297, 2012.
Van Meerloo, J., Kaspers, G.J.L., and Cloos, J. Cell Sensitivity Assays: The MTT Assay. Methods in Molecular Biology 731, 237-245, 2011.
Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology 15, 135-147, 2014.
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., and Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology 11, 700-714, 2010.
Venter, P.A., and Schneemann, A. Recent insights into the biology and biomedical applications of Flock House virus. Cellular and Molecular Life Sciences 65, 2675-2687, 2008.
Viollet, B., Horman, S., Leclerc, J., Lantier, L., Foretz, M., Billaud, M., and Andreelli, F. AMPK inhibition in health and disease. Critical Reviews in Biochemistry and Molecular Biology 45, 276-295, 2010.
Vousden, K.H., and Ryan, K.M. p53 and metabolism. Nature Review Cancer 9, 691-700, 2009.
Vucicevic, L., Misirkic, M., Kristina, J., Vilimanovich, U., Sudar, E., Isenovic,
E., and Trajkovic, V. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7, 40-50, 2011.
Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L.F., Wang, F.S., and Wang, X. Mixed lineage kinase domain-like protein MLKL causes necrotic Membrane disruption upon phosphorylation by RIP3. Molecular Cell 54, 133-146, 2014.
Wang, X., He, Z., Liu, H., Yousefi, S., and Simon, H.U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. The Journal of Immunology 197, 4090-4100, 2016.
Wileman, T. Autophagy as a defence against intracellular pathogens. Essays in Biochemistry 55, 153-163, 2013.
Xu, Y., Yu, H., Qin, H., Kang, J., Yu, C., Zhong, J., and Sun, L. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Letters 314, 232-243, 2012.
Yang, Y.P., Liang, Z.Q., Gao, B., Jia, Y.L., and Qin, Z.H. Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells. Acta Pharmacologica Sinica 29, 123-134, 2008.
Yin, D.X., Zhu, L., and Schimke, R.T. Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Analytical Biochemistry 235, 195-201, 1996.
Yonekawa, T., and Thorburn, A. Autophagy and cell death. Essays in Biochemistry 55, 105-117, 2013.
Yun, C.H., Boggon, T.J., Li, Y., Woo, M.S., Greulich, H., Meyerson, M., and Eck, M.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217-227, 2007.
Zalckvar, E., Berissi, H., Eisenstein, M., and Kimchi, A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720-722, 2009.
Zhang, L., Whitsett, J.A., and Stripp, B.R. Regulation of Clara cell secretory protein gene transcription by thyroid transcription factor-1. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1350, 359-367, 1997.
Zhang, X., Cheng, Q., Yin, H., and Yang, G. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression. International Journal of Oncology 51, 18-24, 2017.
Zhao, Y., Hu, X., Liu, Y., Dong, S., Wen, Z., He, W., Zhang, S., Huang, Q. and Shi, M. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Molecular Cancer 16, 1-12, 2017.