簡易檢索 / 詳目顯示

研究生: 劉昀泓
Liu, Yun-Hong
論文名稱: 反向工程任意分光器在分波多工濾波器中的應用
Application of Inverse Engineering – based Arbitrary Ratio Power Splitters in WDM Filters
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 36
中文關鍵詞: 馬赫-曾德爾干涉儀積體光學光學濾波器波長分段多路復用器光學晶格濾波器
外文關鍵詞: Mach-Zehnder Interferometer, Integrated optics, Optical filter, Wavelength division multiplexer, Optical lattice filter
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文主要研究對於分波多工濾波器(Wavelength Division Multiplexing filters),主要目的為連接不同階數的馬赫-曾德爾干涉多路復用濾波器(cascaded Mach-Zehnder Interferometer multiplexer),利用一分二的分散方法連接來達到低損耗且有平坦通帶的波長通道分段輸出。
    利用不同原理設計的級聯馬赫-曾德爾干涉多路復用濾波器,可以達到需要分開波段的效果。其中需要將各個階(stage)得到的耦合係數與相位延遲組合,控制兩端輸出能具有半個自由光譜範圍(Free Spectral Range) 的波形,讓輸出的兩端能夠得到相鄰的通帶,即得到不同設計的寬通帶與寬阻帶分波器。
    其中在各階(stage)濾波器裡所使用定向耦合器會因為耦合係數受波長影響較大,不在中心波段的部分會有比較多的串音干擾(crosstalk)。論文中主要是以基於STA反向工程法(inverse-engineering)的反向工程任意分光耦合器(Arbitrary ratio power splitters coupler)來取代具有不同分光率的定向耦合器(Directional coupler),其中是利用反向工程任意分光耦合器對於波長變化穩定性高的特性來減少對級聯濾波器波形的輸出干擾,因此使用反向工程任意分光耦合器的波長分段多路復用濾波器可以讓分光效果更好。最後比較將反向工程任意分光耦合器替換成定向耦合器的前後差異。

    This paper mainly studies Wavelength Division Multiplexing filters, the main purpose of which is to connect cascaded Mach-Zehnder interferometer multiplexers of different orders, and use the one-to-two dispersion method to achieve low-loss and flat passband wavelength channel segment output. In this case, the STA-based inverse-engineering arbitrary ratio power splitters are used to replace the directional coupler with different split ratios. Features to reduce the output interference to the cascade filter waveform, so the wavelength segmentation multiplexing filter with inverse-engineering arbitrary ratio power splitters can make the splitting effect better. Finally, we compare the differences before and after the replacement of directional couplers with inverse-engineering arbitrary ratio power splitters.

    中英文摘要 i 致謝 xii 目錄 xiii 表目錄 xiv 圖目錄 xv 第一章 簡介 1 1-1介紹 1 1-2 論文架構 2 第二章 反向工程任意分光耦合器之元件設計原理 3 2-1 反向工程任意分光設計以及反向工程理論 3 2-2 元件設計與模擬 6 2-3 反向工程任意分光耦合器之頻寬範圍與製程誤差 9 第三章 馬赫-曾德爾濾波器設計原理 11 3-1 馬赫-曾德爾濾波器結構 11 3-2 級聯濾波器之結構與特性 12 3-3 級聯濾波器之設計 14 3-4 級聯濾波器中使用定向耦合器與反向工程任意分光耦合器之遞迴關係 15 3-5 設計一階與二階馬赫-曾德爾濾波器 17 第四章 不同情況下馬赫-曾德爾濾波器的模擬結果 20 4-1 理想化之下無損的馬赫-曾德爾濾波器 20 4-2 在馬赫-曾德爾濾波器中使用定向耦合器 22 4-3 在馬赫-曾德爾濾波器中使用反向工程任意分光耦合器 26 第五章 結論 32 參考文獻 33

    [1]M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers”, Journal of Lightwave Technology, 19(12), 1970-1975 (2001).
    [2]C. A. Brackett, “Dense wavelength division multiplexing networks-Principles and applications”, IEEE Journal on Selected Areas in Communications, 8(6), 948-964 (1990).
    [3]A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing using photonic crystals”, Applied Optics, 40(14), 2247-2252 (2001).
    [4]R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood and M. Zirngibl, “An evalution of architectures incorporating wavelength division multiplexing for broad band fiber access”, Journal of Lightwave Technology, 16(9), 1546-1559 (1998).
    [5]W. Shi. et. al, “Ultra compact, flat top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon”, Optics Express, 21(6), 6733-6738 (2013).
    [6]K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview”, Journal of Lightwave Technology, 15(8), 1263-1276 (1997).
    [7]K. P. Koo and A. D. Kersey, “Bragg grating based laser sensors systems with interferometric interrogation and wavelength division multiplexing”, Journal of Lightwave Technology, 13(7), 1243-1249 (1995).
    [8]Matsuo, Y. Yoshikuni, T. Segawa, Y. Ohiso, and H. Okamoto, “A widely tunable optical filter using laddertype structure”, IEEE Photon. Technol. Lett. 493(8), 1114-1116 (2003).
    [9]H. Xu, and Y. Shi, “Flat-top CWDM (de)multiplexer based on MZI with bentdirectional couplers”, IEEE Photon Technol. Lett. 30(2) 169-172 (2018).
    [10]P. Pan. et. al, “Compact 4 channel AWGs for CWDM and LAN WDM in data center monolithic applications”, Optics and Laser Technology, 75, 177-181 (2015).
    [11]H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multiplexer and demultiplexer with nanometer resolution”, Electronics Letters, 26(2), 87-88 (1990).
    [12]C. K. Madsen and J. H. Zhao, “Optical Filter Design and Analysis-A Signal Processing Approach”, John Wiley &Sons, Inc (1999).
    [13]F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass band WDM demultiplexing and multiplexing”, Optics Express, 21(6), 6733-6738 (2013).
    [14]D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, “Shortcuts to adiabaticity: concepts, methods, and applications”, Rev. Mod. Phys. 91(4), 045001 (2019).
    [15]S. Longhi, “Quantum-optical analogies using photonic structures”, Laser and Photon. Rev. 3(3), 243-261 (2009).
    [16]Y.-J. Hung, Z.-Y. Li, H.-C. Chung, F.-C. Liang, M.-Y. Jung, T.-H. Yen, and S.-Y. Tseng, “Mode-evolution-based silicon-on-insulator 3 dB coupler using fast quasiadiabatic dynamics”, Opt. Lett. 44(4), 815-818 (2019).
    [17]H.-C. Chung, and S.-Y. Tseng, “High fabrication tolerance and broadband silicon polarization beam splitter by point-symmetric cascaded fast quasiadiabatic couplers”, OSA Continuum 2(10), 2795-2808 (2019).
    [18]H.-C. Chung, Z.-Y. Li, F.-C. Liang, K.-S. Lee, and S.-Y. Tseng, “The fast quasiadiabatic approach to optical waveguide design”, Proc. SPIE 11031, Integrated Optics/ Devices, Systems, and Applications V, 110310Y (2019).
    [19]H.-C. Chung, S. Martínez-Garaot, X. Chen, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides”, EPL 127(3), 34001-34007 (2019).
    [20]S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity”, Opt. Express 22(16), 18849-18859 (2014).
    [21]H. R. Lewis, and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys. 10, 1458 (1969).
    [22]C.-P. Ho, and S.-Y. Tseng, “Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity”, Opt. Lett. 40(21), 4831-4834 (2015).
    [23]S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity”, Opt. Express 22(16), 18849-18859 (2014).
    [24]R. W. Hamming, Digital Filters (Prentice Hall, 1989).
    [25]K. Okamoto, Fundamentals of optical waveguides, 2nd ed (Academic Press, New York, 2006).
    [26]A. Syahriar, V. M. Schneider, and S. Al-Bader, “The design of mode evolution couplers”, J. Lightwave Technol.16(10), 1907-1914 (1998).
    [27]S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third- order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion” , Optical Express, 15(22), 14765-14771 (2017).
    [28]H. Venghaus, “Wavelength Filters in Fiber Optics” , Springer-Verlag Berlin Heidelberg (2006).
    [29]G. P. Riblet, “A directional coupler with very flat coupling” , IEEE Transactions on Microwave Theory and Techniques, 26(2), 70-74 (1978).
    [30]E. Brion et al, “Adiabatic elimination in a lambda system” , Journal of Physics A : Mathematical and Theoretical,40(5), 1033 (2007).

    無法下載圖示 校內:2025-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE