簡易檢索 / 詳目顯示

研究生: 吳映萱
Wu, Yin-Hsuan
論文名稱: 利用反竊聽合作式波束成型之合作式傳輸賽局
A Cooperative Transmission Game Using Anti-Eavesdropper Cooperative Beamforming
指導教授: 張志文
Chang, Chin-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 57
中文關鍵詞: 感知無線電、合作式通訊、實體層安全性、史塔博格賽局、賽局。
外文關鍵詞: cognitive radio, cooperative communication, physical layer security, Stackelberg game, game theory .
相關次數: 點閱:145下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來, 反竊聽的技術已被廣泛的討論。然而, 大多方法都假設已知竊聽者的通道資訊。換句話說, 在大多數的現有文獻中, 都只著重在如何避免被竊聽, 而非考慮在竊聽者隨機出現的情況下, 設計出一個的完整的傳輸方法。因此, 在此論文中, 我們考慮了在感知無線電網路中利用反竊聽叢集波束成型的策略, 設計出當竊聽者隨機出現的完整傳輸方案。

    當竊聽者不存在, 使用基於公平性三階史塔博格賽局的合作傳輸方案。若其存在, 則利用傳統未知竊聽者通道資訊的叢集波束成型方法。在公平性的三階史塔博格賽局中, 由次要使用者所形成的叢集先決定欲協助主要使用者的傳輸功率。接著, 主要使用者也會調整欲分享給次要使用者的傳輸時間。為了避免主要使用者極端的分配時間, 由裁判做出一個公平的決定使得主要使用者及次要使用者的效用函數差值為最小。透過模擬結果可得知, 此方法的總傳輸速率及功率效率優於傳統的方法。

    Recently, the anti-eavesdropper (anti-EVE) technique has been well explored in the literature. However, the constant appearance of EVEs was generally assumed. In other words, these works focused on how to escape from being overheard rather than designing a complete transmission scheme with random appearances of EVEs. Thus, in this paper, we take the random appearances into consideration when designing a cooperative transmission scheme in the cognitive radio (CR) network using the anti-EVE cluster beamforming (CB) strategy.

    When EVE is not observed, the proposed cooperative scheme based on the fair three-stage Stackelberg (FTS) game is carried out; Otherwise, the the conventional CB cooperative scheme without eavesdropper’s channel state information (CBNE) is executed. In the FTS game, the cluster of SUs first determines the transmission power to help PU for packet transmissions. Afterwards, PU can also adjust its willingness of transmission time sharing. To avoid extremely selfish time allocation by PU, a referee can make a fair decision of time sharing based on the minimization of the difference between PU’s and SUs’ utility functions. Compared with the conventional method, the superior performance in the sum transmission rates and power efficiency are proved by simulation results.

    Chinese Abstract i English Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 Overview 1 1.2 Thesis Outline 2 2 Background and Literature Survey 3 2.1 Cognitive Radio Network 3 2.1.1 Spectrum Management for Cognitive Radio Network 3 2.1.2 Dynamic Spectrum Access for Cognitive Radio 7 2.2 Cooperative Communication 9 2.2.1 Cooperative Model and Protocols 9 2.2.2 Cooperative Communication for Cognitive Radio Network 11 2.3 Game Theory 13 2.3.1 Cournot Model 14 2.3.2 Bertrand Model 14 2.3.3 Stackelberg Model 15 2.4 Literature Survey on Secure Communications 16 2.4.1 Introduction of Physical Layer Security 17 2.4.2 Cooperative Communication in Physical Layer Security 17 2.4.3 Cooperative Cognitive Radio Network in Physical Layer Security 20 3 System Model 23 3.1 Network Model 23 3.2 Time Frame Structure 25 3.3 Cooperation Schemes 27 4 Fair Three-Stage Stackelberg Game 32 4.1 Stackelberg Game between PU and SU 32 4.2 Utility Function of Players 33 4.3 Best Response of Players 36 5 Simulation Results 40 5.1 Simulation Setup 40 5.2 Property of Fair Three-Stage Stackelberg Game 42 5.3 Transmission Rate 46 5.4 Transmission Power Efficiency 48 5.5 Secrecy Rate 50 6 Conclusions and Future Works 51 6.1 Conclusions 51 6.2 Future Works 52 Bibliography 53 Vita 57

    [1] B. Wang and K. J. R Liu, “Advances in cognitive radio networks: A survey,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, Feb. 2011.
    [2] Y.-S. Shiu, S. Y. Chang, H.-C.Wu, H. S.C.-H., and H.-H. Chen, “Physical layer security in wireless networks: a tutorial,” Wireless Communications, IEEE, vol. 18, pp. 66–74.
    [3] M. A., F. S., J. Huang, and A. Swindlehurst, “Principles of physical layer security in multiuser wireless networks: A survey,” Communications Surveys and Tutorials, IEEE, Feb. 2014.
    [4] L. Lai and H. E. Gamal, “The relay-eavesdropper channel: Cooperation for secrecy,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4005–4019, Sep. 2008.
    [5] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Improving wireless physical layer security via cooperating relays,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1875–1888, Mar. 2010.
    [6] H.-M. Wang, Q. Yin, and X.-G. Xia, “Distributed beamforming for physical-layer security of two-way relay networks,” IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3532–3545, Jul. 2011.
    [7] K. Lee, O. Simeone, C. Chae, and J. Kang, “Spectrum leasing via cooperation for enhanced physical-layer secrecy,” in Proc. IEEE ICC, 2011.
    [8] N. Zhang and N. Lu, N. Cheng and J. Mark and X. Shen, “Cooperative spectrum access toward secure information transfer for crns,” IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2453–2464, 2013.
    [9] H. Jeon, J. Choi, S. McLaughlin, and J. Ha, “Channel aware encryption and decision fusion for wireless sensor networks,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 4, pp. 619–625, Apr. 2013.
    [10] A. Mukherjee and A. L. Swindlehurst, “Detecting passive eavesdroppers in the MIMO wiretap channel,” in Proc. IEEE ICASSP, pp. 2809–2812, Mar. 2012.
    [11] J. P. Cho, Y.-W. P. Hong, and C. C. J. Kuo., “A game theoretic approach to eavesdropper cooperation in miso wireless networks,” in Proc. IEEE ICASSP, 2011.
    [12] F. C. Commission, “Spectrum policy task force,” Rep. ET Docket, no. 02-135, Nov. 2002.
    [13] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Netw., vol. 50, pp. 2127–2159, May. 2006.
    [14] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Communications Magazine, vol. 46, pp. 40–48, Apr. 2008.
    [15] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Process. Mag., vol. 24, pp. 79–89, May. 2007.
    [16] H. Ochiai, P. Mitran, H. Poor, and V. Tarokh, “Collaborative beamforming for distributed wireless ad hoc sensor networks,” IEEE TRANSACTIONS ON SIGNAL
    PROCESSING, vol. 53, no. 11, Nov. 2005.
    [17] K. B. Letaief and W. Zhang, “Cooperative communications for cognitive radio networks,” Proc. IEEE, vol. 97, no. 5, pp. 878–893, May. 2009.
    [18] O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and R. Pickholtz, “Spectrum leasing to cooperating secondary ad hoc networks,” IEEE J. Sel. Areas Commun., vol. 26, pp. 203–213, 2008.
    [19] Y. Han and A. Pandharipande and S. Ting, “Cooperative decode-andforward relaying for secondary spectrum access,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 4945–4950, 2009.
    [20] P. M. and B. H., “Channel aware encryption and decision fusion for wireless sensor networks,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 4, pp. 619–625, Apr.2013.
    [21] H. Jeon, J. Choi, S. McLaughlin, and J. Ha, “Qos support in radio resource sharing with cournot competition,” Cognitive Information Processing (CIP), 2010 2nd
    International Workshop on, 2010.
    [22] C.Wenson, Y.-P. Lin, and S.-L. Su, “Spectrum leasing game for underlay cognitive ratio network with primary system using adaptive rate-based pricing strategy,” COCORA 2014, The Fourth International Conference on Advances in Cognitive Radio, pp. 14–19, Feb. 2014.
    [23] S. Bu and F. Yu., “Channel aware encryption and decision fusion for wireless sensor networks,” Vehicular Technology, IEEE Transactions on, vol. 63, no. 4, pp. 2115 – 2126, Jun 2014.
    [24] N. Zhang, N. Cheng, N. Lu, H. Zhou, M. J.W., and X. Shen, “Risk-aware cooperative spectrum access for multi-channel cognitive radio networks,” Selected Areas in Communications, IEEE Journal on, vol. 32, pp. 516–527, Mar. 2014.
    [25] C. L.C. and D. D., “Analysis of cognitive radio scenes based on non-cooperative game theoretical modelling,” Communications, IET, vol. 6, Sep. 2012.
    [26] H. Yu and W. Tang and S. Li, “Joint optimal sensing and power allocation for cooperative relay in cognitive radio networks,” Proc. IEEE ICC, Jun. 2012.
    [27] H. V. Poor, “Information and inference in the wireless physical layer,” IEEE Wireless Commun., vol. 19, no. 2, pp. 40–47, 2012.
    [28] A. D. Wyner, “The wire-tap channel,” vol. 54, 1975, pp. 1355–1387.
    [29] S. Jeong, K. Lee, J. Kang, Y. Baek, and B. Koo, “Cooperative jammer design in cellular network with internal eavesdroppers,” in Proc. IEEE Mil. Comm. Conf.,
    2012.
    [30] S. Jeong, K. Lee, J. Kang, and D. Ha, “Low complexity cooperative jamming strategies in secure cellular network,” Communications and Information Technologies (ISCIT), 2012 International Symposium on., pp. 730–734, Oct. 2012.
    [31] K. A., Wornell, and G. W., “Secure transmission with multiple antennas : The MISOME wiretap channel,” Information Theory, IEEE Transactions on, vol. 56, no. 7, Jul. 2010.
    [32] W. Zhang, R. Mallik, and K. Letaief, “Cooperative spectrum sensing optimization in cognitive radio networks,” in Proc. IEEE Int. Conf. Commun., pp. 3411–3415, 2008.
    [33] W. Bialas, “Cooperative n-person stackelberg games,” IEEE Conf. Decision and Control, pp. 2439–2444, 1989.
    [34] FCC, “Et docket no 03-322 notice of proposed rule making and order,” Dec. 2003.
    [35] Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes and their achievable diversity orders,” IEEE Trans. on Wireless Commun., vol. 8, no. 3, pp. 1414–1423, Mar. 2009.
    [36] S. W., H. Z., B. T., D. M., and A. Hjorungnes, “Coalition formation games for collaborative spectrum sensing,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 276–297, Apr. 2011.
    [37] Bloch, Matthieu, and J. Barros., “Physical-layer security,” Cambridge University
    Press, 2011.

    無法下載圖示 校內:2018-04-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE