| 研究生: |
黃家偉 Huang, Jia-Wei |
|---|---|
| 論文名稱: |
奈米碳管/水凝膠複合物於玻璃管道定域修飾以供生物分子於無膠體溶液之分離 Stable SWNT/hydrogel Composites Patterned in Glass Microchannels for Gel-Free Separation of Biomolecules. |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 蛋白質分離 、奈米碳管/水凝膠 、無膠體溶液分離 |
| 外文關鍵詞: | carbon nanotube/hydrogel, protein separation, gel-free separation |
| 相關次數: | 點閱:166 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究在玻璃微管道建立一個單壁奈米碳管(SWNT)/有機高分子複合物修飾,提供生物分子的分離之用。概念在於創造一個結構穩定之SWNT/水凝膠複合物修飾微流體晶片,於無膠體溶液(gel-free buffers)下進行生物分子的分離。
膠電泳技術被廣泛應用於蛋白質、DNA的分離上,在這種分離方式下,高分子膠體加入電泳緩衝溶液中作為分子篩來進行分離。當我們將此分離法應用於微流體晶片(玻璃材質)電泳時,則會產生一些問題,例如粘度高的膠體會造成較高的背壓,質地脆弱的膠體結構容易遭受流體破壞,而被破壞的膠體可能造成管道阻塞。有鑒於此,我們致力發展一個穩定且能抵抗流體壓力的分子篩結構以解決上述問題,並直接將此分子篩固定於微管道中,使分子通過固定化的膠體來達到分離的效果。由於單純膠體本身結構強度不足,因此我們計畫合成SWNT和高分子聚合物共價鍵結之奈米複合物,讓加入的單壁奈米碳管(SWNT)提供足夠的結構強度,創造出具有高強度與穩定性的奈米碳管/水凝膠複合物。我們利用定域光聚合技術(photopatterning)在微管道上快速且簡單的修飾奈米碳管/水凝膠複合物區域。我們的奈米碳管/水凝膠複合物修飾之微流體晶片以一公分的分離長度,在少於90秒的分離時間,即可分離三種FITC標定的蛋白質混和物(casein、BSA和IgG)。分離所使用的電泳緩衝溶液是包含0.1 %SDS的TBE buffer(pH=8.3)和10 %氰甲烷(acetonitrile)。
Abstract
Here we report the fabrication of single walled carbon nanotube (SWNT)/organic polymer composites in glass microchannels for application to the separation of biomolecules. The idea is to create mechanically stable SWNT/hydrogel composites which can allow for the use of gel-free buffers in biomolecular separations.
Gel electrophoresis has wide applications in protein/DNA separations. In these separations, the gels are mixed with buffers to form static sieving mediums for separation. When transferred to glass devices such as microchip electrophoresis, the gel format causes series problems including high back pressure due to high viscosity. The soft and brittle construct is easily broken by the flow and the torn fragments may cause channel blockage. We are aiming at developing sieving construct that is stable and can sustain the flow. One way to deal with these problems is to immobilize the gels within the microchannels so that separation can be achieved as the molecules move through the immobilized gels. Since the gels are not mechanically strong enough to withstand continuous liquid flow, combining them with SWNT would give the mechanical strength required. We therefore synthesized composites in which SWNT were covalently linked to acrylic polymers to form nanocomposites. The structure of nanocomposites has high strength and stability. Photopatterning provides a fast and simple way to create a controlled nanocomposite phase in the microchannel. The SWNT/hydrogel composites patterned chip can separate three FITC labeled proteins (casein, BSA, IgG) in a short separation length (about 1cm) in less than 90 s. The separation was performed in 90 % TBE buffer pH 8.3-0.1 % SDS and 10 % acetonitrile.
[1] C. Schoneich, A.F.R. Huhmer, S.R. Rabel, J.F. Stobaugh, S.D.S. Jois, Anal. Chem. 67, R155-181(1995).
[2] M. Chiari, N. Dellorto, A. Gelain, Anal. Chem., 68, 2731-2736(1996).
[3] Z. Zhao, A. Malik, M.L. Lee, Anal. Chem., 65, 2747-2752(1993).
[4] J.K. Towns, F.E. Regnier, Anal. Chem., 64, 2473-2478(1992)
[5] W. Norde, Adv. Colloid Interface Sci., 25, 267-340(1986)
[6] M. K. Ko, J. J. Pellegrino, R. Nassimbene, P. Marko, J. Membr. Sci., 76, 101-120(1993)
[7] S. C. Beale, Anal. Chem., 70, 279R-300R(1998)
[8] R. M. McCormick, Anal Chem, 60, 2322-2328(1988)
[9] H. H. Lauer and D. McManigill, Anal. Chem.,58, 166-170(1986)
[10] W. G. H. M. Muijselaar, C. H. M. M. Debruijn, F. M. Everaerts, J. Chromatogr. A, 605, 115-123(1992)
[11] E. L. Hult, A. Emmer, J. Roeraade, J. Chromatogr. A, 757, 255-262(1997)
[12] H. G. Lee, D. M. Desiderio, J. Chromatogr. B, 691, 67-75(1997)
[13] D. Corradini, A. Rhomberg, C. Corradini, J. Chromatogr. A, 661, 305-313(1994)
[14] D. Corradini, G. Cannarsa, E. Fabbri, C. Corradini, J. Chromatogr. A, 709, 127-134(1995)
[15] M. M. Bushey, J. W. Jorgenson, J. Chromatogr., 480, 301-310(1989)
[16] X. H. Fang, T. Zhu, V. H Sun, J. High Resolut. Chromatogr., 17, 749-752(1994)
[17] R. P. Oda, B. J. Madden, T. C. Spelsberg, J.P. Landers, J. Chromatogr. A, 680, 85-92(1994)
[18] Boris G. Belenkii, Galina E. Kassalainen, Dmitry G. Nasledov, J. Chromatogr. A , 879, 189-196(2000)
[19] K. Srinivasan, C. Pohl, N. Avdalovic, Anal. Chem., 69, 2798-2805(1997)
[20] M. Gilges, M. H. Kleemiss, G. Schomburg, Anal. Chem., 66, 2038-2046(1994)
[21] J. J. Lian, B. C. Giordano, J. P. Landers, Anal. Chem. 73, 4994 (2001)
[22] M. Tabuchi, Y. Kuramitsu, K. Nakamura, Y. Baba, J. Proteome. Res., 2, 431 (2002)
[23] A. E. Herr, D. J. Throckmorton, A. A. Davenport, A. K. Singh, Anal. Chem., 77, 585 (2005)
[24] L. Bousse, S. Mouradian, A. Minalla, H. Yee, K.Williams, R. Dubrow, Anal. Chem.,73,1207-1212 (2001)
[25] S. Iijima, Nature,354, 56 (1991)
[26] S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, J. Phys. Chem. Solids,61, 1152 (2000)
[27] J. Chen, H.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Science, 282, 95-98 (1998)
[28] J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Irkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D.T. Collbert, R. E. Smally, R. C. Haddon, J. Phys. Chem. B, 105,2525-2528(2001)
[29] W. Zhao, C. Song, P. E. Pehrsson, J. Am. Chem. Soc., 124, 12418-12419.(2002)
[30] A. H. Barber, S. R. Cohen, H. D. Wagner, Phys. Rev. Lett, 92, 186103(2004)
[31] P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, P. E. Laibinis, J. Phys. Chem. B, 102, 426-436(1998)
[32] U. J. Kim, C. A. Furtado, X. Liu, G. Chen, P. C. Eklund, J. Am. Chem. Soc., 127, 15437-15445(2005)
[33] M. E. Itkis, D. E. Perea, R. Jung, S. Niyogi, R. C. Haddon, J. Am. Chem. Soc., 127, 3439-2448(2005)
[34] S. H. Chen,Y. H. Lin, L. Y. Wang, C. C. Lin, G. B. Lee, Anal. Chem., 74, 5146-5153(2002)
[35] C. C. Lin, G. B. Lee, S. H. Chen, Electrophoresis, 23, 3550–3557(2002)
[36] E. Garcia, J. R. Kirkham, A. V. Hatch, K. R. Hawkins, P. Yager, Lab on a Chip, 4, 78-82(2004)
[37] G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett., 56, 930-933. (1986)
[38] J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano, E. V. Barrera, Adv. Funct. Mater., 14, 643. (2004)
[39] S. Banerjee, T. Hemraj-Benny, S. S. Wong, Adv. Mater., 17, 17. (2005)
[40] T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow, W. D. Zhang, Macromolecules, 37, 7214. (2004)
[41] M. Dautrevaux, Y. Boulanger, K. Han, G. Biserte, Eur. J. Biochem., 11, 267 (1969)
[42] C. Yu, M. H. Davey, F. Svec, J. M. Frechet, Anal. Chem., 73, 5088-5096 (2001)
[43] V. Pretorius, B.J. Hopkins, D.J. Schieke, J.Chromatogr, 99,23(1974)
[44] C. Y. Liu, Electrophoresis, 22, 612. (2001)
[45] A. Dermaux, P. Sandra, Electrophoresis, 20, 3027. (1999)
[46] V. Pacakova, P. Coufal, K. Stulik, J.Chromatgr. A, 834, 257. (1999)
[47] K. D. Altria, J. Chromatogr. A, 856, 443. (1999)
[48] P. Jandik, W. R. Jone, A. Weston, P. R. Brown, LC-GC Mag. Sep. Sci.,
9,634. (1991)
[49] P. Jandik, W. R. Jones, J. Chromatogr., 546, 431. (1991)
[50] P. R. Haddad, P. Doble, M. Macka, J. Chromatogr. A, 856, 145. (1999)
[51] J. Romano, P. Jandik, W. R. Jones, P. E. Jackson, J. Chromatogr.,
546,411. (1991)
[52] J. S. Fritz, Capillary Electrophoresis: Theory and Practice, CRC Press,
1998, 2nd ed., 249.
[53] J. Zhang, X. Huang, S. Zhang, C. Horvath, Anal. Chem. 72, 3022-3029
(2000)
[54] Y. Li, Y. Chen, R. Xiang, D. Ciuparu, L. D. Pfefferle, C. Horvath, J. A. Wilkins Anal. Chem. 77,1398-1406.(2005)
[55] G. J. M. Bruin, P. P. H. Tock, J. C. Kraak, H. Poppe, J. Chromatogr. 517, 557-572. (1990)
[56] C. Fujimoto, trends in Anal. Chem. 18,291-301.(1999)
[57] Q. Tang, M. L. Lee, trends in Anal. Chem. 19, 648-663 (2000)
[58] B. W. Daniel, M. L. David, J. F.Shannon, Anal. Chem., 71, 3894-3900 (1999)
[59] D. L.Morris, J. N. Sutton, R. G. Harper, A. T. Timperman, J. Proteome Res., 3, 1149-1154 (2004)
[60] Y. He, E. S. Yeung, J. Proteome Res., 1, 273-277(2002)
[61] Y. Li, J. S. Buch, F. Rosenberger, D. L. DeVoe, C. S. Lee, Anal. Chem., 76 , 742 –748 (2004)
[62] Y. F. Huang, M. M. Hsieh, W. L. Tseng, H. T. Chang, J. Proteome Res., 5, 429-436 (2006)
[63] Y. Li, Y. Chen, R. Xiang, D. Ciuparu, L. D. Pfefferle, C. Horvath, J. A. Wilkins, Anal. Chem. 77, 1398-1406 (2005)