簡易檢索 / 詳目顯示

研究生: 陳嘉弘
Chen, Chia-Hung
論文名稱: 直接硼氫化鈉-過氧化氫燃料電池之研究
Study on Direct Sodium Borohydride-Hydrogen Peroxide Fuel Cell
指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: DBFC觸媒催化活性水解產氫率
外文關鍵詞: DBFC, Catalyst activity, Hydrolysis, Hydrogen evolution
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討直接硼氫化鈉-過氧化氫燃料電池(Direct Sodium Borohydride – Hydrogen Peroxide Fuel Cell, DBFC)中的操作參數與產氫率對性能的影響。
    研究使用自行設計的電池本體進行實驗;第一部分探討的操作參數包括陽極端燃料供給流率、擴散層材料的選用(碳紙與碳布)、陽極端燃料濃度、陽極端安定劑濃度與不同電極觸媒的質子膜(不同觸媒配置與Loading量)等六種參數,以觀察各項對於性能的影響。
    此外,在DBFC研究中陽極端燃料水解產氫的問題也被廣泛的討論;研究第二部分對於三種參數:不同陽極燃料濃度、陽極安定劑濃度與不同電極觸媒之質子膜(不同觸媒配置與Loading量)改變對產氫率的影響進行探討。
    實驗結果顯示,增加燃料流率與使用碳布作為擴散層對於性能提升有明顯的幫助,此外加大安定劑濃度有助於抑制燃料水解產氫,使性能增加而產氫率下降。而增加NaBH4濃度提高反應活性,使性能上升,但同時伴隨著水解反應使產氫率同時增加。而使用Pt/C為陽極端觸媒其性能較好但產氫率也提高,而Au/C觸媒催化活性雖不及Pt/C,但卻能抑制燃料水解使產氫率減少。當提高觸媒含量時會使得催化活性提升,使觸媒特性更為明顯。而實驗得到電池最佳性能為16 W、最大電流值40 A。

    The main purposes of this study are to investigate the effects of the operation conditions and the hydrogen evolution on performance of Direct Sodium Borohydride – Hydrogen Peroxide Fuel Cell (DBFC).
    The fuel cell used in the experiments is self-designed. The effects of the fuel flow rate on the anode side, materials of diffusion layer, the concentration of the fuel NaBH4 and the hydrolysis stabilizer NaOH, compositions and contents of the anode and cathode electrocatalysts on the performance of this DBFC are investigated in the first part of this study.
    The phenomenon of the hydrogen evolution from the anode during the operation of the DBFC was investigated extensively in the early researches of DBFCs. Therefore the second part of this research studies the effects of various operation parameters on the hydrogen evolution, including the concentration of NaBH4 and NaOH, and compositions and contents of the anode and cathode electrocatalysts.
    The experimental results show that the performance of the fuel cell is improved when increasing the flow rate of the fuel and using the carbon cloth as the diffusion layer. In general, increasing the NaOH concentration decreases the hydrolysis reaction. However, the decrease in hydrolysis reaction inhibits the evolution of hydrogen at the same time and increases the performance of the fuel cell. Increasing the borohydride concentration increases the anode reaction rate and electrochemical kinetics. Although, the high borohydride concentration increases the performance of fuel cell, it also increases the evolution of hydrogen by hydrolysis reaction at same time.
    The Pt/C catalyst on the anode provides high catalyst activity than Au/C. Contrarily, the Au/C catalyst has better ability to inhibit the hydrolysis reaction than the Pt/C. Increasing the electrocatalyst content improves the activity. In this study, the maximum power and current of 16 W and 40 A are achieved, respectively.

    中文摘要 I Abstracts II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 X 符號表 XIII 第一章 序論 - 1 - §1.1 前言 - 1 - §1.2 燃料電池的發展歷史與簡介 - 2 - §1.3 燃料電池種類 - 5 - §1.4 直接硼氫化鈉/過氧化氫燃料電池的基本構造及工作原理 - 7 - §1.5 文獻回顧 - 15 - §1.5.1 DBFC製作與操作參數相關實驗的文獻 - 15 - §1.5.2 DBFC操作過程產氫相關的文獻 - 18 - §1.6 研究動機與目的 - 21 - 第二章 研究方法 - 23 - §2.1 直接硼氫化鈉/過氧化氫燃料電池實驗設計 - 23 - §2.1.1 膜電極組(MEA) - 24 - §2.1.2 雙極板(Bipolar Plate) - 28 - §2.1.3 集電板(Collector Plate) - 30 - §2.1.4 端板(End Plate) - 30 - §2.1.5 襯套(Gasket) - 32 - §2.2 實驗架構與設備 - 32 - §2.2.1 燃料電池測試系統 - 33 - §2.2.2 溫控系統 - 34 - §2.2.3 燃料儲存設備 - 36 - §2.2.4 幫浦 - 38 - §2.2.5 氫氣流量計 - 39 - §2.3 實驗步驟與操作條件設定 - 40 - §2.3.1 實驗步驟 - 40 - §2.3.2 操作條件設定 - 41 - §2.3.2.1 基本實驗條件設定 - 41 - §2.3.2.2 燃料流量實驗 - 42 - §2.3.2.3 擴散層實驗 - 43 - §2.3.2.4 陽極端燃料與安定劑濃度實驗 - 44 - §2.3.2.5 不同陽極端燃料與安定劑濃度與產氫關係之實驗 - 44 - §2.3.2.6 性能曲線與氫氣產生量之關係實驗 - 45 - §2.3.2.7 固定操作電壓時產氫量的關係實驗 - 45 - 第三章 結果與討論 - 46 - §3.1 DBFC操作參數對性能之影響 - 46 - §3.1.1 供給燃料之流率 - 46 - §3.1.2擴散層材質與性能影響 - 47 - §3.1.3陽極端燃料與安定劑濃度 - 51 - §3.1.3.1 Type 1 (20% Au/C-Pt/C)之MEA觸媒配置 - 51 - §3.1.3.2 Type 2 (40% Au/C-Pt/C)之MEA觸媒配置 - 55 - §3.1.3.3 Type 3 (20% Pt/C-Au/C)之MEA觸媒配置 - 59 - §3.1.3.4 Type 4 (40% Pt/C-Au/C)之MEA觸媒配置 - 64 - §3.1.4 不同電極觸媒MEA膜電極組的配置對性能影響 - 67 - §3.1.4.1 四組不同觸媒MEA在同濃度燃料下的特性探討 - 67 - §3.1.4.2 四組不同觸媒之MEA在最佳性能下的特性探討 - 71 - §3.2 DBFC操作參數在陽極端產氫情況對性能影響探討 - 74 - §3.2.1 不同陽極端燃料與安定劑濃度與產氫關係之探討 - 75 - §3.2.1.1 Type 1 (20% Au/C-Pt/C)之MEA觸媒配置 - 75 - §3.2.1.2 Type 2 (40% Au/C-Pt/C)之MEA觸媒配置 - 78 - §3.2.1.3 Type 3 (20% Pt/C-Au/C)之MEA觸媒配置 - 81 - §3.2.1.4 Type 4 (40% Pt/C-Au/C)之MEA觸媒配置 - 84 - §3.2.2 不同電極觸媒MEA膜電極組配置對產氫量的影響 - 87 - §3.2.2.1 在同濃度燃料下對產氫的特性探討 - 88 - §3.2.2.2 在最佳性能下對產氫的特性探討 - 89 - 第四章 結論 - 93 - 參考文獻 - 95 -

    [1] 黃鎮江(2008),“綠色能源”,初版,全華圖書股份有限公司,(pp.1-4-1-21)
    [2] 黃鎮江(2007),“燃料電池”,第二版,全華科技圖書股份有限公司(pp.5-20)
    [3] 林昇佃等人(2004),“燃料電池:新世紀能源”,初版,滄海書局,(pp.1-30-1-35)
    [4] N. Luo, G.H. Miley, J. Mather, R. Burton, G. Hawkins, E. Byrd, F. Holcomb, J. Rusek (2008),“Engineering of the Bipolar Stack of a Direct NaBH4 Fuel Cell”, Journal of Power Sources 185 pp.356-362.
    [5] G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, D. Carroll (2007), “Direct NaBH4/H2O2 Fuel Cells”, Journal of Power Sources 165 pp.509-516.
    [6] L. Gu, N. Luo, G.H. Miley (2007), “Cathode Electrocatalyst Selection and Deposition for a Direct Borohydride/Hydrogen Peroxide Fuel Cell”, Journal of Power Sources 173 pp.77-85.
    [7] D.J. Brodrecht, J.J. Rusek (2003), “Aluminum–Hydrogen Peroxide Fuel-Cell Studies”, Applied Energy 74 pp.113-124.
    [8] B.H. Liu, Z.P. Li, S. Suda (2008), “Development of High-Performance Planar Borohydride Fuel Cell Modules for Portable Applications”, Journal of Power Sources 175 pp.226-231.
    [9] H. Cheng, K. Scott (2006), “Influence of Operation Conditions on Direct Borohydride Fuel Cell Performance”, Journal of Power Sources 160 pp.407-412
    [10] C. Kim, K.J. Kim, M.Y. Ha (2008), “Investigation of the Characteristics of a Stacked Direct Borohydride Fuel Cell for Portable Applications”, Journal of Power Sources 180 pp.114-121.
    [11] H. Cheng, K. Scott, K. Lovell (2006), “Material Aspects of the Design and Operation of Direct Borohydride Fuel Cells”, Fuel Cells 5 pp.367-375.
    [12] N. Luo, G.H. Miley, K.J. Kim, R. Burton, X. Huang (2008), “NaBH4/H2O2 Fuel Cells for Air Independent Power Systems”, Journal of Power Sources 185 pp.685–690.
    [13] J. Ma, Y. Sahai, R.G. Buchheit (2010), “Direct Borohydride Fuel Cell using Ni-based Composite Anodes”, Journal of Power Sources 195 pp.4709-4713 .
    [14] W. Haijun, W. Cheng, L. Zhixiang, M. Zongqiang (2010), “Influence of Operation Conditions on Direct NaBH4/H2O2 Fuel Cell Performance”, journal of hydrogen energy 35 pp.2648-2651.
    [15] S. Lux, L. Gu, G. Kopec, R. Bernas, G. Miley (2010), “Water Management Issues for Direct Borohydride/Peroxide Fuel Cells”, Journal of Fuel Cell Science and Technology 7 pp.24501-24505.
    [16] B.H. Liu, S. Suda (2007), “Influences of Fuel Crossover on Cathode Performance in a Micro Borohydride Fuel Cell”, Journal of Power Sources 164 pp.100-104.
    [17] C. Celik, F.G.B. San, H.I. Sarac (2010), “Influences of Sodium Borohydride Concentration on Direct Borohydride Fuel Cell Performance”, Journal of Power Sources 195 pp.2599-2603
    [18] Z.P. Li, B.H. Liu, J.K. Zhu, S. Suda (2006), “Depression of Hydrogen Evolution During Operation of a Direct Borohydride Fuel Cell”, Journal of Power Sources 163 pp.555-559.
    [19] K.T. Park, U.H. Jung, S.U. Jeong, S.H. Kim (2006), “Influence of Anode Diffusion Layer Properties on Performance of Direct Borohydride Fuel Cell”, Journal of Power Sources 162 pp.192-197.
    [20] H.Y. Qin, Z.X. Liu, W.X. Yin, J.K. Zhu, Z.P. Li (2008), “Effects of Hydrazine Addition on Gas Evolution and Performance of the Direct Borohydride Fuel Cell”, Journal of Power Sources 185 pp.895-898.
    [21] B.H. Liu, Z.P. Li, J.K. Zhu, S. Suda (2008), “Influences of Hydrogen Evolution o the Cell and Stack Performances of the Direct Borohydride Fuel Cell”, Journal of Power Sources 183 pp.151–156.
    [22] S. Towne, M. Carella, W.E. Mustain, V. Viswanathan, P. Rieke, U. Pasaogullari, P. Singh (2009), “Performance of a Direct Borohydride Fuel Cell” , ECS Transactions 25 pp.1951-1957.
    [23] G.J. Wang, Y.Z. Gao, Z.B Wang, C.Y. Du, G.P. Yin (2010), “A Membrane Electrode Assembly with High Fuel Coulombic Efficiency for Passive Direct Borohydride Fuel Cells” , Electrochemistry Communications 12 pp.1070–1073.
    [24] P. He, Y. Wang, X. Wang, F. Pei, H. Wang, L. Liu, L. Yi (2010), “Investigation of Carbon Supported Au-Ni Bimetallic Nanoparticles as Electrocatalyst for Direct Borohydride Fuel Cell”, Journal of Power Sources 196 pp.1042-1047.
    [25] C. Kim, K.J. Kim, M.Y. Ha (2008), “Performance Enhancement of a Direct Borohydride Fuel Cell in Practical Running Conditions”, Journal of Power Sources 180 pp.154-161.
    [26] B.H. Liu, Z.P. Li, S. Suda (2008), “A Study on Performance Stability of the Passive Direct Borohydride Fuel Cell”, Journal of Power Sources 185 pp.1257-1261.
    [27] C.Y. Wen, Y.S. Lin, C.H. Lu (2009), “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack”, Journal of Power Sources 192 pp.475-485.
    [28] http://industrial.panasonic.com/2011
    [29] J. Zhang, Y. Zheng, J.P. Gore, I. Mudawar, T.S. Fisher (2007), “1 kWe Sodium Borohydride Hydrogen Generation System Part II: Reactor Modeling”, Journal of Power Sources 170 pp.150-159.
    [30] Y. Kojima, K.I. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto (2004), “Development of 10 kW-Scale Hydrogen Generator using Chemical Hydride” , Journal of Power Sources 125 pp.22-26.
    [31] K. Wang, J. Lu, L. Zhuang (2011), “A Mechanistic Study of Borohydride Anodic Oxidation” , Journal of Catalysis 170 pp.99-109.
    [32] J. Ma, N.A. Choudhury, Y. Sahai (2010), “A Comprehensive Review of Direct Borohydride Fuel Cells” , Journal of Renewable and Sustainable Energy Reviews 14 pp.183-199.
    [33] 衣寶廉(2005),“燃料電池-原理與應用”,五南圖書出版股份有限公司,(pp.4-179 -4-180)
    [34] E. Gyenge, M. Atwan, D. Northwood (2006), “Electrocatalysis of Borohydride Oxidation on Colloidal Pt and Pt-Alloys (Pt-Ir, Pt-Ni, and Pt-Au) and Application for Direct Borohydride Fuel Cell Anodes” , Journal of The Electrochemical Society 153 pp.150-158.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE