簡易檢索 / 詳目顯示

研究生: 洪毓廷
Hung, Yu-Ting
論文名稱: 應用人工智慧建構高齡者肌少症分類系統之研究
Applying Artificial Intelligence to Develop a Classification System on Sarcopenia for the Elderly
指導教授: 林彥呈
Lin, Yang-Cheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 85
中文關鍵詞: 肌少症機器學習支持向量機(SVM)決策樹(DT)隨機森林(RF)K鄰近法(kNN)樸素貝葉氏(Naive Bayes)sEMGG-Sensor
外文關鍵詞: Sarcopenia, Machine Learning, Support Vector, Decision Tree, Random Forest, K Neighborhood, Naive Bayes, sEMG, G-Sensor
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球已漸漸步入老年化社會,老年後的生活品質也逐漸被重視。許多研究調查得知跌倒所導致的骨折是造成老人無法維持正常生活與造成死亡最大的因素(Gadelha et al., 2018),而造成老人容易跌倒的主要原因的其中之一就是肌肉的退化,從醫學上研究我們知道全身肌肉伴隨年齡的增加會逐漸老化稱之為肌少症(Marcell, 2003)。針對肌少症造成患者行動不便或是膝蓋疼痛,復健醫師通常建議老人在醫院的復健科執行復健療程,並搭配護膝輔具給予膝關節支撐的力量。目前醫療院由於CT及MRI價格高昂的原因,並無法針對個案膝蓋關節附近肌群做量化評估,醫師通常依照觀察行走速度及問卷判斷肌少症情形,且不易依照科學數據方式得知復健效果,對於患者同時無法數據化看見復健成效。近年人工智慧與醫療輔具的崛起,醫療輔具已不再僅有單一功能,現今的科技輔具已漸漸朝向智慧化發展,故本研究以科技輔具作為數據蒐集並將其資料結合肌肉綜合分類指標的數據供患者及醫師做為診斷參考。
    本研究使用臺灣新創公司(智遊科技)研發的新型智慧型復健護膝,於臺灣台南的地方社區針對50-70歲的老人,經受測者同意並實施其公司產品所引導之復健運動,提取表面肌電訊號(sEMG)及六軸感測器(G-sensor)數值將其運用在支持向量機(SVM)、決策樹(DT)、隨機森林(RF)、K鄰近法(kNN)及樸素貝葉氏(Naive Bayes)對數據做分類處理比較。依照數據中sEMG訊號的評估肌肉強度的均方根值(RMS)、評估肌肉疲勞程度MNF(mean frequency)以及六軸感測器之Y方向加速度作為機器學習訓練資料。此三種資料代表在固定的復健運動下,肌肉強度數值表現與在基礎平面上位移關係並將其肌肉的疲勞程度納入分群標準。本研究成功以上述資料訓練決策樹(DT)93.56% 、支持向量機(SVM) 81.56%、隨機森林(RF)96.37 %、K鄰近法(kNN)89.65%及樸素貝葉氏(Naive Bayes 75.52%的準確率。我們的目標是使用機器學習給予五個肌力等級,作為醫師對於肌少症診斷時一種非侵入式的評估工具。這將有助於提高對肌少症的診斷準確性和個體化治療策略的制定。

    The world is gradually moving towards an aging society, and the quality of life in old age is increasingly being emphasized. Many studies have found that falls leading to fractures are the major factors causing the elderly to be unable to maintain a normal life and leading to death (Gadelha et al., 2018). One of the main reasons the elderly are prone to falls is muscle degeneration, and medically, we know that whole body muscles gradually age with the increase in age, known as sarcopenia (Marcell, 2003). To address mobility issues or knee pain caused by sarcopenia, rehabilitation physicians usually recommend elderly patients undertake rehabilitation courses in hospital rehabilitation departments, supported with knee brace aids to provide knee joint support. Current medical institutions cannot quantitatively assess the muscle groups around the knee joint for each case due to the high cost of CT and MRI. Physicians usually judge the condition of sarcopenia based on observation of walking speed and questionnaires, and it is not easy to know the rehabilitation effect scientifically, and patients cannot see the rehabilitation results in a quantified way. With the rise of artificial intelligence and medical aids in recent years, medical aids are no longer single-function. Modern technological aids are gradually developing toward intelligence. Therefore, this study uses technological aids for data collection and combines the data with comprehensive muscle classification indicators for patients and doctors as diagnostic references.
    We uses a novel intelligent rehabilitation knee brace developed by a Taiwanese start-up company (Ai Free) on elderly individuals aged between 50-70 in a local community in Tainan, Taiwan. With the consent of the participants and under the guidance of the company's product-induced rehabilitation exercises, surface electromyographic signals (sEMG) and six-axis sensor (G-sensor) values were extracted and used in Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (kNN), and Naive Bayes for data classification comparison. The Root Mean Square (RMS) of the sEMG signal, assessing muscle strength, the Mean Frequency (MNF) evaluating muscle fatigue, and the Y-direction acceleration of the six-axis sensor was taken as the machine learning training data. These three types of data represent the relationship between muscle strength numerical performance and displacement on the baseline plane under fixed rehabilitation exercise, and the muscle fatigue level is included in the clustering standard. In this study, we successfully trained the Decision Tree (DT) with an accuracy of 93.56%, Support Vector Machine (SVM) 81.56%, Random Forest (RF) 96.37%, K-Nearest Neighbors (kNN) 89.65%, and Naive Bayes with an accuracy of 75.52%. Our goal is to use machine learning to provide five muscle strength levels as a non-invasive evaluation tool for doctors when diagnosing sarcopenia. This will help improve the diagnostic accuracy of sarcopenia and the formulation of personalized treatment strategies.

    摘要 i Applying Artificial Intelligence to Develop a Classification System on Sarcopenia for the Elderly iii TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES ix LIST OF SYMBOLS AND ABBREVIATIONS xi CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.1.1 Impact of Sarcopenia 2 1.1.2 Development of Machine Learning in Technological Aids 4 1.1.3 Evolution of Technological Aids in Healthcare 5 1.2 Motivation 7 1.3 Purpose 9 1.4 Scope 9 1.5 Framework 10 CHAPTER 2 literature review 13 2.1 Related Research on Sarcopenia and Assistive Technology 13 2.1.1 Sarcopenia Discussion 13 2.1.2 Surface Electromyography 14 2.1.3 G-sensor Six-Axis Sensor 15 2.2 Artificial Intelligence 16 2.2.1 Machine Learning 16 2.2.2 Application of wearable devices to the elderly 18 2.2.3 Decision Tree 20 2.2.4 Random Forest 21 2.2.5 K-Nearest Neighbor 22 2.2.6 Support Vector Machine 23 2.2.7 Naive Bayes 24 2.3 Libraries 25 2.3.1 Python 25 2.3.2 NumPy 26 2.3.3 Matplotlib 28 2.3.4 Scikit-Learn 28 2.4 Analytical Tools 29 2.4.1 Confusion Matrix 29 2.4.2 ROC Curve 31 2.4.3 Learning Curve 32 CHAPTER 3 METHODS 34 3.1 First Phase of Research 36 3.1.1 Literature Analysis 36 3.1.2 Introduction of Case Equipment 37 3.1.3 Training data 38 3.2 Second Stage of Research 40 3.2.1 Data Processing 40 3.2.2 Model Construction 42 3.2.3 Model Training Procedure 45 CHAPTER 4 Results and Discussion 47 4.1 Experimental Environment 47 4.1.1 Research Hardware and Software Equipment 47 4.1.2 Source of Case Data 48 4.1.3 Experiment Settings 49 4.2 Classification Performance 54 4.2.1 Experimental Data Distribution 54 4.2.2 Multivariate Classification 3D Chart 55 4.3 Model Analysis 58 4.3.1 Confusion Matrix 58 4.3.2 ROC Curve 63 4.3.3 k-Fold Cross-Validation Method 67 4.4 Discussion 73 CHAPTER 5 Results and Discussion 75 5.1 Research Limitations 75 5.2 Future Applications of Classification System 76 REFERENCES 78

    Abdelouahad, A., Belkhou, A., Jbari, A., & Bellarbi, L. (2018). Time and frequency parameters of sEMG signal—Force relationship. Paper presented at the 2018 4th international conference on optimization and applications (ICOA).
    Altin, C., & Er, O. (2017). Designing wearable joystick and performance comparison of EMG classification methods for thumb finger gestures of joystick control. Biomed Res India, 28, 4730-4736.
    Amarappa, S., & Sathyanarayana, S. (2014). Data classification using Support vector Machine (SVM), a simplified approach. Int. J. Electron. Comput. Sci. Eng, 3, 435-445.
    Amra, I. A. A., & Maghari, A. Y. (2017). Students performance prediction using KNN and Naïve Bayesian. Paper presented at the 2017 8th international conference on information technology (ICIT).
    Amyar, A., Modzelewski, R., Li, H., & Ruan, S. (2020). Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Computers in biology and medicine, 126, 104037.
    An, C., Lim, H., Kim, D.-W., Chang, J. H., Choi, Y. J., & Kim, S. W. (2020). Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study. Scientific reports, 10(1), 18716.
    Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., & Ridella, S. (2012). The'K'in K-fold Cross Validation. Paper presented at the ESANN.
    Ari, N., & Ustazhanov, M. (2014). Matplotlib in python. IEEE.
    Assegie, T. A., & Nair, P. S. (2019). Handwritten digits recognition with decision tree classification: a machine learning approach. International journal of electrical and computer engineering (IJECE), 9(5), 4446-4451.
    Bataineh, A. A. (2019). A comparative analysis of nonlinear machine learning algorithms for breast cancer detection. International Journal of Machine Learning and Computing, 9(3), 248-254.
    Baumgartner, R. N., Koehler, K. M., Gallagher, D., Romero, L., Heymsfield, S. B., Ross, R. R., . . . Lindeman, R. D. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology, 147(8), 755-763.
    Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., . . . Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. npj Schizophrenia, 1(1), 1-7.
    Bhargava, N., Sharma, G., Bhargava, R., & Mathuria, M. (2013). Decision tree analysis on j48 algorithm for data mining. Proceedings of international journal of advanced research in computer science and software engineering, 3(6).
    Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
    Bisong, E., & Bisong, E. (2019). Introduction to Scikit-learn. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 215-229.
    Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145-1159.
    Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
    Burns, E., & Kakara, R. (2018). Deaths from falls among persons aged≥ 65 years—United States, 2007–2016. Morbidity and Mortality Weekly Report, 67(18), 509.
    Chang, S. L., Cho, Y. A., Tsai, C. P., & Chen, S.-W. (2010). The communication system constructing image together with data supervising. Paper presented at the 2010 International Conference on Internet Technology and Applications.
    Chaudhary, A., Kolhe, S., & Kamal, R. (2016). An improved random forest classifier for multi-class classification. Information Processing in Agriculture, 3(4), 215-222.
    Chen, P. J., Chang, C. H., Kuo, Y. L., & Lin, Y. C. (2021). Designing and evaluating a wearable sEMG device for the elderly. In 14th International Conference on ICT, Society, and Human Beings, ICT 2021, 18th International Conference on Web Based Communities and Social Media, WBC 2021 and 13th International Conference on e-Health, EH 2021-Held at the 15th Multi-Conference on Computer Science and Information Systems, MCCSIS 2021 (pp. 136-143). IADIS.
    Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
    Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. The Lancet, 393(10191), 2636-2646.
    De Ville, B. (2013). Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics, 5(6), 448-455.
    Dejnabadi, H., Jolles, B., & Aminian, K. (2005). A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. Ieee Transactions on Biomedical Engineering, 52(ARTICLE), 1478-1484.
    Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340, 250-261.
    Dent, E., Morley, J. E., Cruz-Jentoft, A. J., Arai, H., Kritchevsky, S. B., Guralnik, J., ... & Vellas, B. (2018). International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. The journal of nutrition, health & aging, 22, 1148-1161..
    Dogru, N., & Subasi, A. (2018). Traffic Accident Detection Using Random Forest Classifier. Paper presented at the 2018 15th Learning and Technology Conference.
    Dong, L., Li, X., & Xie, G. (2014). Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification. Paper presented at the Abstract and Applied Analysis.
    Drăgulinescu, A., Drăgulinescu, A.-M., Zincă, G., Bucur, D., Feieș, V., & Neagu, D.-M. (2020). Smart socks and in-shoe systems: State-of-the-art for two popular technologies for foot motion analysis, sports, and medical applications. Sensors, 20(15), 4316.
    Edmunds, K., Gíslason, M., Sigurðsson, S., Guðnason, V., Harris, T., Carraro, U., & Gargiulo, P. (2018). Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities. PLoS One, 13(3), e0193241.
    Erickson, B. J., & Kitamura, F. (2021). Magician’s corner: 9. Performance metrics for machine learning models. In (Vol. 3, pp. e200126): Radiological Society of North America.
    Fix, E. (1985). Discriminatory analysis: nonparametric discrimination, consistency properties (Vol. 1): USAF school of Aviation Medicine.
    Gadelha, A. B., Vainshelboim, B., Ferreira, A. P., Neri, S. G. R., Bottaro, M., & Lima, R. M. (2018). Stages of sarcopenia and the incidence of falls in older women: A prospective study. Archives of gerontology and geriatrics, 79, 151-157.
    Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector machine based linear and non-linear pattern classification. Paper presented at the 2019 International Conference on Intelligent Sustainable Systems (ICISS).
    Gujarathi, T., & Bhole, K. (2019). Gait analysis using imu sensor. Paper presented at the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT).
    Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362.
    Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., . . . Hägg, G. (1999). European recommendations for surface electromyography. Roessingh research and development, 8(2), 13-54.
    Hoo, Z. H., Candlish, J., & Teare, D. (2017). What is an ROC curve?. Emergency Medicine Journal, 34(6), 357-359.Hunt, J. (2019). Introduction to Matplotlib. 35-42.
    Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. IEEE.
    Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS, Washington State University, 37(2.5), 3.
    James, S. L., Lucchesi, L. R., Bisignano, C., Castle, C. D., Dingels, Z. V., Fox, J. T., . . . Liu, Z. (2020). The global burden of falls: global, regional and national estimates of morbidity and mortality from the Global Burden of Disease Study 2017. Injury prevention, 26(Suppl 2), i3-i11.
    Jarchi, D., Pope, J., Lee, T. K., Tamjidi, L., Mirzaei, A., & Sanei, S. (2018). A review on accelerometry-based gait analysis and emerging clinical applications. IEEE reviews in biomedical engineering, 11, 177-194.
    Jung, Y. (2018). Multiple predicting K-fold cross-validation for model selection. Journal of Nonparametric Statistics, 30(1), 197-215.
    Keller, K. (2019). Sarcopenia. Wiener Medizinische Wochenschrift, 169(7-8), 157-172.
    Kim, H. E., Kim, H. H., Han, B. K., Kim, K. H., Han, K., Nam, H., ... & Kim, E. K. (2020). Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. The Lancet Digital Health, 2(3), e138-e148.
    Kim, S. C., & Cho, Y. S. (2022). Predictive System Implementation to Improve the Accuracy of Urine Self-Diagnosis with Smartphones: Application of a Confusion Matrix-Based Learning Model through RGB Semiquantitative Analysis. Sensors, 22(14), 5445.
    Kingsford, C., & Salzberg, S. L. (2008). What are decision trees? NATURE BIoTECHNoloGy, 26(9), 1011.
    Kohli, P. S., & Arora, S. (2018). Application of machine learning in disease prediction. Paper presented at the 2018 4th International conference on computing communication and automation (ICCCA).
    Kolte, A., Mahitha, B., & Raju, N. G. (2019). Stratification of Parkinson Disease using python scikit-learn ML library. Paper presented at the 2019 International Conference on Emerging Trends in Science and Engineering (ICESE).
    Krajewski, J., Schnieder, S., Sommer, D., Batliner, A., & Schuller, B. (2012). Applying multiple classifiers and non-linear dynamics features for detecting sleepiness from speech. Neurocomputing, 84, 65-75.
    Kramer, O., & Kramer, O. (2016). Scikit-learn. Machine learning for evolution strategies, 45-53.
    Krittanawong, C. (2018). The rise of artificial intelligence and the uncertain future for physicians. European journal of internal medicine, 48, e13-e14.
    Landgrebe, T. C., & Duin, R. P. (2008). Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis. IEEE transactions on pattern analysis and machine intelligence, 30(5), 810-822.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
    Li, W., Shi, P., & Yu, H. (2021). Gesture recognition using surface electromyography and deep learning for prostheses hand: state-of-the-art, challenges, and future. Frontiers in neuroscience, 15, 621885.
    Luz, E., Silva, P., Silva, R., Silva, L., Guimarães, J., Miozzo, G., . . . Menotti, D. (2021). Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Research on Biomedical Engineering, 1-14.
    Maćkiewicz, A., & Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19(3), 303-342.
    Marcell, T. J. (2003). Sarcopenia: Causes, Consequences, and Preventions. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(10), 911.
    Markoulidakis, I., Kopsiaftis, G., Rallis, I., & Georgoulas, I. (2021). Multi-Class Confusion Matrix Reduction method and its application on Net Promoter Score classification problem. Paper presented at the The 14th pervasive technologies related to assistive environments conference.
    Masetic, Z., & Subasi, A. (2016). Congestive heart failure detection using random forest classifier. Computer methods and programs in biomedicine, 130, 54-64.
    Massó, N., Rey, F., Romero, D., Gual, G., Costa, L., & Germán, A. (2010). Surface electromyography applications in the sport. Apunts Med Esport, 45(165), 121-130.
    Miskelly, F. (2001). Assistive technology in elderly care. Age and Ageing, 30(6), 455-458.
    Morley, J. E. (2018). Treatment of sarcopenia: the road to the future. Journal of cachexia, sarcopenia and muscle, 9(7), 1196.
    Morley, J. E., Abbatecola, A. M., Argiles, J. M., Baracos, V., Bauer, J., Bhasin, S., . . . Evans, W. J. (2011). Sarcopenia with limited mobility: an international consensus. Journal of the American Medical Directors Association, 12(6), 403-409.
    Nagasato, D., Tabuchi, H., Ohsugi, H., Masumoto, H., Enno, H., Ishitobi, N., . . . Hayashi, K. (2018). Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy. Journal of ophthalmology, 2018.
    Naji, M. A., El Filali, S., Aarika, K., Benlahmar, E. H., Abdelouhahid, R. A., & Debauche, O. (2021). Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Computer Science, 191, 487-492.
    Nam, Y., Kim, Y., & Lee, J. (2016). Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor. Sensors (14248220), 16(5).
    Narici, M. V., & Maffulli, N. (2010). Sarcopenia: characteristics, mechanisms and functional significance. British medical bulletin, 95(1), 139-159.
    Noshad, Z., Javaid, N., Saba, T., Wadud, Z., Saleem, M. Q., Alzahrani, M. E., & Sheta, O. E. (2019). Fault detection in wireless sensor networks through the random forest classifier. Sensors, 19(7), 1568.
    Ortega, J., Lagman, A. C., Natividad, L. R. Q., Bantug, E. T., Resureccion, M. R., & Manalo, L. (2020). Analysis of performance of classification algorithms in mushroom poisonous detection using confusion matrix analysis. International Journal, 9(1.3).
    Otterlo, V., Martijn, & Wiering, M. (2012). Reinforcement learning and markov decision processes. In Reinforcement Learning. 3-42.
    Passos, I. C., Mwangi, B., & Kapczinski, F. (2016). Big data analytics and machine learning: 2015 and beyond. The Lancet Psychiatry, 3(1), 13-15.
    Perlich, C. (2010). Learning Curves in Machine Learning. In.
    Rabin, N., Kahlon, M., Malayev, S., & Ratnovsky, A. (2020). Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques. Expert Systems with Applications, 149, 113281.
    Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health information science and systems, 2, 1-10.
    Raschka, S. (2014). Naive bayes and text classification i-introduction and theory. arXiv preprint arXiv:1410.5329.
    Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information, 11(4), 193.
    Stephens, R. (2020). Redmonk slackchat: January 2020 programming language rankings. Procedia Engineering..
    Rodrigues, F., Domingos, C., Monteiro, D., & Morouço, P. (2022). A review on aging, sarcopenia, falls, and resistance training in community-dwelling older adults. International journal of environmental research and public health, 19(2), 874.
    Safavian, S. R., & Landgrebe, D. (1991). A SURVEY OF DECISION TREE CLASSIFIER METHODOLOGY1. IEEE Trans. Systems, Man, & Cybernetics.
    Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172-185.
    Shang, W., Huang, H., Zhu, H., Lin, Y., Wang, Z., & Qu, Y. (2005). An improved kNN algorithm–fuzzy kNN. Paper presented at the Computational Intelligence and Security: International Conference, CIS 2005, Xi’an, China, December 15-19, 2005, Proceedings Part I.
    Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research (IJSR), 5(4), 2094-2097.
    Sieber, C. C. (2019). Malnutrition and sarcopenia. Aging clinical and experimental research, 31, 793-798.1
    Singh, N. (2016). How to Get Started as a Developer in AI. Retrieved November 8, 2020 from https://software.intel.com/content/www/us/en/develop/articles/how-to-get-started-as-a-developer-in-ai.html
    Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. (2016). A review of machine learning techniques using decision tree and support vector machine. Paper presented at the 2016 international conference on computing communication control and automation (ICCUBEA).
    Soon, S., Svavarsdottir, H., Downey, C., & Jayne, D. G. (2020). Wearable devices for remote vital signs monitoring in the outpatient setting: an overview of the field. BMJ Innovations, 6(2).
    Sturma, A., Hruby, L. A., Prahm, C., Mayer, J. A., & Aszmann, O. C. (2018). Rehabilitation of upper extremity nerve injuries using surface EMG biofeedback: protocols for clinical application. Frontiers in neuroscience, 12, 906.
    Tagliafico, A. S., Bignotti, B., Torri, L., & Rossi, F. (2022). Sarcopenia: how to measure, when and why. La radiologia medica, 127(3), 228-237.
    Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A brief review of nearest neighbor algorithm for learning and classification. Paper presented at the 2019 International Conference on Intelligent Computing and Control Systems (ICCS).
    Ullah, I., Liu, K., Yamamoto, T., Zahid, M., & Jamal, A. (2021). Electric vehicle energy consumption prediction using stacked generalization: An ensemble learning approach. International Journal of Green Energy, 18(9), 896-909.
    Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., & Mueller, A. (2015). Scikit-learn: Machine learning without learning the machinery. GetMobile: Mobile Computing and Communications, 19(1), 29-33.
    Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-label classification. Machine learning, 73, 185-214.
    Verschueren, S., Gielen, E., O’neill, T., Pye, S., Adams, J., Ward, K., . . . Claessens, F. (2013). Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporosis International, 24, 87-98.
    Viering, T., & Loog, M. (2022). The shape of learning curves: a review. IEEE transactions on pattern analysis and machine intelligence.
    Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a structure for efficient numerical computation. Computing in science & engineering, 13(2), 22-30..
    Frontera, W. R., Hughes, V. A., Fielding, R. A., Fiatarone, M. A., Evans, W. J., & Roubenoff, R. (2000). Aging of skeletal muscle: a 12-yr longitudinal study. Journal of applied physiology, 88(4), 1321-1326.
    Wilkinson, D., Piasecki, M., & Atherton, P. (2018). The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing research reviews, 47, 123-132.
    Wilson, J. A., Deluzio, K., Dunbar, M., Caldwell, G., & Hubley-Kozey, C. (2011). The association between knee joint biomechanics and neuromuscular control and moderate knee osteoarthritis radiographic and pain severity. Osteoarthritis and Cartilage, 19(2), 186-193.
    You, I., Choo, K. K. R., & Ho, C. L. (2018). A smartphone-based wearable sensors for monitoring real-time physiological data. Computers & Electrical Engineering, 65, 376-392.
    Zhang, M. L., & Zhou, Z. H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition, 40(7), 2038-2048.
    Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST), 8(3), 1-19.
    Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of translational medicine, 4(11).

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE