簡易檢索 / 詳目顯示

研究生: 江碩桓
Jiang, Shuo-Huan
論文名稱: 吡啶磷配位基的金屬錯化合物的產氫催化反應
Hydrogen Evolution Catalyzed by Metal complexes Bearing with Pyridylphosphine Ligands
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 69
中文關鍵詞: 光催化產氫吡啶磷配位基鎳吡啶磷配位錯合物鈷吡啶磷配位錯合物
外文關鍵詞: photocatalytic hydrogen evolution, pyridylphosphine ligand, nickel complex, cobalt complex
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今無論是在工業原料上或是日常的電力來源,化石燃料都扮演著一個相當重要的角色,但也因為如此,大氣中二氧化碳的含量逐漸升高,所以對於現在的我們來說,發展一種可以替代再生更可以永續使用的能源方式是相當迫切的。基於這個原因,在這個研究中,我們嘗試開發可以藉由光催化來去產生氫氣的鎳以及鈷錯合物,我們利用了兩種吡啶磷配位基PN2 跟 PN2’ (PN2 = bis(2-picolyl)phenylphospphine), PN2’ =bis(6-methyl-2-picolyl)phenylphosphine,[[NiII(PN2)2][ClO4]2 ([1][ClO4]2), {[NiII(PN2’)2][ClO4]2 • 2.5CH3CN ([2][ClO4]2 • 2.5CH3CN) and [CoII(PN2’)2(C2H5CN)][ClO4]2 ([3][ClO4]2).,這些我們合成出的錯合物都透過X-光單晶繞射儀、元素分析、紫外-可見光-近紅外光光譜、核磁共振光譜以及循環伏安法進行分析與鑑定,並且也有對光催化產氫進行研究,發現錯合物2 利用酒精水溶液當溶劑的情況下,對於光催化的反應性在144小時下轉化數為2014,其反應性是在實驗室以往合成的錯合物中是最高的, 而且就算只在純水中也可以進行光催化(轉化數 172)

    Fossil fuels (gas, oil and coals) are energy carriers and raw materials for industry products for decades. Their combustion is contributed to CO2 rising level. Therefore, it is urgent to develop alternative, renewable and sustainable energy resources. In this research, we developed nickel and cobalt complexes with tridentate pyridylphosphine derivatives, PN2 and PN2’, as supporting ligands (PN2 = bis(2-picolyl)phenylphospphine), PN2’ = bis(6-methyl-2-picolyl)phenylphosphine). Three complexes have been obtained, [NiII(PN2)2][ClO4]2 ([1][ClO4]2), [NiII(PN2’)2][ClO4]2 • 2.5CH3CN ([2][ClO4]2 • 2.5CH3CN) and [CoII(PN2’)2(C2H5CN)][ClO4]2 ([3][ClO4]2). All of them have been characterized by X-ray crystallography, elemental analysis, UV-vis-NIR spectroscopy, NMR spectroscopy and cyclic voltammetry. Furthermore, the photocatalytic hydrogen evolution of theses complexes has been investigated. Complex 2 has the best catalytic efficiency among three in H2O/EtOH hybrid solution (TON = 2014 in 144 hours).

    Abstract III 摘要 IV 誌謝 V List of contents VI List of Schemes VIII List of Tables IX List of Figures X Abbreviations XIII Chapter 1 Introduction 1 1-1 Renewable energy 1 1-2 Photocatalytic and electrocatalytic hydrogen production system 1 1-3 Electrocatalytic hydrogen evolution system. 2 1-4 Photocatalytic hydrogen evolution system. 7 1-5 Motivation of this work 10 Chapter 2. Result and discussion 11 2-1. Synthesis and characterization of nickel complex 11 2-2 Synthesis and characterization of [NiII(PN2)2][ClO4]2 ([1][ClO4]2) 12 Synthesis. 12 Elemental analysis 12 The X-ray structure 13 Spectroscopic and electrochemical study. 16 2-3. Synthesis and characterization of [NiII(PN2’)2][ClO4]2 • 2.5CH3CN ([2][ClO4]2 • 2.5CH3CN) 20 Synthesis. 20 Elemental analysis 20 The X-ray structure 21 Spectroscopic and electrochemical study. 25 2-4. Synthesis and characterization of [CoII(PN2’)2(C2H5CN)][ClO4]2 ([3][ClO4]2) 30 Synthesis. 30 Elemental analysis 30 The X-ray structure 31 Spectroscopic and electrochemical study. 34 2-5 Photocatalytic hydrogen evolution 39 Chapter 3. Conclusions 45 Chapter 4. Experiments and Instruments 46 4-1 General procedures and materials. 46 4-2 Synthesis 47 Synthesis of bis(2-picolyl)phenylphosphine (PN2) 47 Synthesis of bis(6-methyl-2-picolyl)phenylphosphine (PN2’) 47 Synthesis of [NiII(PN2)2][ClO4]2 ([1][ClO4]2) 48 Synthesis of [NiII(PN2’)2][ClO4]2 • 2.5CH3CN ({[2][ClO4]2 • 2.5CH3CN) 48 Synthesis of [CoII(PN2’)2(C2H5CN)][ClO4]2 ([3][ClO4]2) 48 4-3 The study for Photocatalytic hydrogen evolution 49 4-4 Instrument 50 X-ray crystallographic data collection of the structures. 50 Elemental analysis. 50 UV-Vis-NIR spectroscopy. 50 Cyclic Voltammetry. 50 Nucleic Magnetic Resonance Spectroscopy. 51 Electron Magnetic Resonance Spectroscopy 51 Gas Chromatograph. 51 References 52 Appendix A 55 CIF check of [NiII(PN2)2][ClO4]2 ([1][ClO4]2) 55 Appendix B 58 CIF check of [NiII(PN2’)2][ClO4]2 • 2.5MeCN ([2][ClO4]2 • 2.5CH3CN) 58 Appendix C 62 CIF check of [CoII(PN2’)2(C2H5CN)][ClO4]2 ([3][ClO4]2) 62 Appendix D 65 Appendix E 67

    References
    1. Grice, K. A., Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO2 catalysis. Coordination Chemistry Reviews 2017, 336, 78-95.
    2. Doney, S. C.; Fabry, V. J.; Feely, R. A.; Kleypas, J. A., Ocean Acidification: The Other CO2 Problem. Annual Review of Marine Science 2009, 1 (1), 169-192.
    3. Solis, B. H.; Hammes-Schiffer, S., Theoretical Analysis of Mechanistic Pathways for Hydrogen Evolution Catalyzed by Cobaloximes. Inorganic Chemistry 2011, 50 (21), 11252-11262.
    4. Solis, B. H.; Hammes-Schiffer, S., Substituent Effects on Cobalt Diglyoxime Catalysts for Hydrogen Evolution. Journal of the American Chemical Society 2011, 133 (47), 19036-19039.
    5. Dempsey, J. L.; Winkler, J. R.; Gray, H. B., Mechanism of H2 Evolution from a Photogenerated Hydridocobaloxime. Journal of the American Chemical Society 2010, 132 (47), 16774-16776.
    6. Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J., Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chemical Society Reviews 2013, 42 (6), 2388-2400.
    7. Schrauzer, G. N.; Holland, R. J., Hydridocobaloximes. Journal of the American Chemical Society 1971, 93 (6), 1505-1506.
    8. Fisher, B. J.; Eisenberg, R., Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. Journal of the American Chemical Society 1980, 102 (24), 7361-7363.
    9. Rountree, E. S.; Dempsey, J. L., Potential-dependent electrocatalytic pathways: controlling reactivity with p K a for mechanistic investigation of a nickel-based hydrogen evolution catalyst. Journal of the American Chemical Society 2015, 137 (41), 13371-13380.
    10. Razavet, M.; Artero, V.; Fontecave, M., Proton electroreduction catalyzed by cobaloximes: Functional models for hydrogenases. Inorganic chemistry 2005, 44 (13), 4786-4795.
    11. Hu, X.; Cossairt, B. M.; Brunschwig, B. S.; Lewis, N. S.; Peters, J. C., Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chemical communications 2005, (37), 4723-4725.
    12. Hu, X.; Brunschwig, B. S.; Peters, J. C., Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. Journal of the American Chemical Society 2007, 129 (29), 8988-8998.

    13. Jacques, P.-A.; Artero, V.; Pécaut, J.; Fontecave, M., Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proceedings of the National Academy of Sciences 2009, 106 (49), 20627-20632.
    14. Liu, Y.; Fu, L.-Z.; Yang, L.-M.; Liu, X.-P.; Zhan, S.-Z.; Ni, C.-L., The impact of modifying the ligands on hydrogen production electro-catalyzed by meso-tetra-pX-phenylporphin cobalt complexes, CoT (X) PP. Journal of Molecular Catalysis A: Chemical 2016, 417, 101-106.
    15. Beyene, B. B.; Mane, S. B.; Hung, C.-H., Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble anionic cobalt (II) porphyrin. Chemical Communications 2015, 51 (81), 15067-15070.
    16. Zhang, D.-X.; Yuan, H.-Q.; Wang, H.-H.; Ali, A.; Wen, W.-H.; Xie, A.-N.; Zhan, S.-Z.; Liu, H.-Y., Transition metal tetrapentafluorophenyl porphyrin catalyzed hydrogen evolution from acetic acid and water. Transition Metal Chemistry 2017, 42 (8), 773-782.
    17. Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J., Molecular cobalt pentapyridine catalysts for generating hydrogen from water. Journal of the American Chemical Society 2011, 133 (24), 9212-9215.
    18. Das, A.; Han, Z.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., Nickel complexes for robust light-driven and electrocatalytic hydrogen production from water. ACS Catalysis 2015, 5 (3), 1397-1406.
    19. Zarkadoulas, A.; Field, M. J.; Papatriantafyllopoulou, C.; Fize, J.; Artero, V.; Mitsopoulou, C. A., Experimental and theoretical insight into electrocatalytic hydrogen evolution with nickel bis (aryldithiolene) complexes as catalysts. Inorganic chemistry 2016, 55 (2), 432-444.
    20. Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; Rakowski DuBois, M.; DuBois, D. L., Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. Journal of the American Chemical Society 2006, 128 (1), 358-366.
    21. Gross, M. A.; Reynal, A.; Durrant, J. R.; Reisner, E., Versatile photocatalytic systems for H2 generation in water based on an efficient DuBois-type nickel catalyst. Journal of the American Chemical Society 2014, 136 (1), 356-366.
    22. Pool, D. H.; Stewart, M. P.; O’Hagan, M.; Shaw, W. J.; Roberts, J. A.; Bullock, R. M.; DuBois, D. L., Acidic ionic liquid/water solution as both medium and proton source for electrocatalytic H2 evolution by [Ni (P2N2) 2] 2+ complexes. Proceedings of the National Academy of Sciences 2012, 109 (39), 15634-15639.

    23. Du, P.; Schneider, J.; Luo, G.; Brennessel, W. W.; Eisenberg, R., Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorganic chemistry 2009, 48 (11), 4952-4962.
    24. Zhang, P.; Jacques, P.-A.; Chavarot-Kerlidou, M.; Wang, M.; Sun, L.; Fontecave, M.; Artero, V., Phosphine coordination to a cobalt diimine–dioxime catalyst increases stability during light-driven H2 production. Inorganic chemistry 2012, 51 (4), 2115-2120.
    25. Xie, A.; Liu, X.-L.; Xiang, Y.-C.; Luo, G.-G., A homogeneous molecular system for the photogeneration of hydrogen from water based on a [RuII (bpy) 3] 2+ photosensitizer and a phthalycyanine cobalt catalyst. Journal of Alloys and Compounds 2017, 717, 226-231.
    26. Luo, G. G.; Li, X. C.; Wang, J. H., Visible Light‐Driven Hydrogen Evolution from Aqueous Solution in a Noble‐Metal‐Free System Catalyzed by a Cobalt Phthalocyanine. ChemistrySelect 2016, 1 (3), 425-429.
    27. Dong, J.; Wang, M.; Zhang, P.; Yang, S.; Liu, J.; Li, X.; Sun, L., Promoting effect of electrostatic interaction between a cobalt catalyst and a xanthene dye on visible-light-driven electron transfer and hydrogen production. The Journal of Physical Chemistry C 2011, 115 (30), 15089-15096.
    28. Guttentag, M.; Rodenberg, A.; Bachmann, C.; Senn, A.; Hamm, P.; Alberto, R., A highly stable polypyridyl-based cobalt catalyst for homo-and heterogeneous photocatalytic water reduction. Dalton transactions 2013, 42 (2), 334-337.
    29. McNamara, W. R.; Han, Z.; Yin, C.-J. M.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions. Proceedings of the National Academy of Sciences 2012, 109 (39), 15594-15599.
    30. McLaughlin, M. P.; McCormick, T. M.; Eisenberg, R.; Holland, P. L., A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution. Chemical Communications 2011, 47 (28), 7989-7991.
    31. Han, Z.; Shen, L.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems. Journal of the American Chemical Society 2013, 135 (39), 14659-14669.
    32. Kermagoret, A.; Tomicki, F.; Braunstein, P., Nickel and iron complexes with N, P, N-type ligands: synthesis, structure and catalytic oligomerization of ethylene. Dalton transactions 2008, (22), 2945-2955.
    33. Yang, L.; Powell, D. R.; Houser, R. P., Structural variation in copper (I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalton Transactions 2007, (9), 955-964.

    無法下載圖示 校內:2025-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE