簡易檢索 / 詳目顯示

研究生: 邱議賢
Ciou, Yi-Sian
論文名稱: 錫與鉛被侷限於奈米多孔隙基架中的超導性
Superconductivity of Tin and Lead Confined within Nanoporous Matrices
指導教授: 田聰
Tien, Cheng
共同指導教授: 張烈錚
Chang, Lieh-Jeng
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 第二類超導體奈米複合材料交流磁化率熱容上臨界磁場磁熱不穩定性活化能正曲率高壓效應
外文關鍵詞: type II superconductor, nanocomposite, ac susceptibility, heat capacity, upper critical field, magnetothermal instability, activation energy, positive curvature, high pressure effect
相關次數: 點閱:167下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 錫(Sn)和鉛(Pb)都屬於傳統的第一類超導體,臨界溫度分別為3.72K和7.20K、臨界磁場則分別為306 Oe和803 Oe。我們將這兩種元素侷限於奈米玻璃球陣列或奈米多孔隙玻璃基架內,分別製成Sn opal、Sn in porous glass、Pb opal、Pb in porous glass等樣品,進行熱容、交流磁化率和直流磁化強度等物理性質之量測,可發現其超導熱性和磁性具有第二類超導體的特徵,諸如上臨界磁場、磁通釘紮現象、正曲率現象與磁通躍動等。
    我們可由H-Tc圖的高場區段估算出遠高於塊材的上臨界磁場,並從低場部分觀察到正曲率現象;藉由M-T量測證明磁通釘紮現象之存在;在磁滯曲線中發現磁通躍動之現象,並以絕熱近似法建立模型來擬合實驗結果。除此之外,我們還探究了交流頻率與相變溫度的相關性,計算各靜磁場下的活化能;嘗試將Pb in porous glass置入高壓系統中進行直流磁性量測,發現高壓將導致臨界溫度和磁場降低。

    Both tin and lead are the conventional type I superconductor with critical temperature Tc = 3.72K, 7.20K and critical field Hc = 306,803 Oe respectively. These elements were confined into SiO2 nano-sphere matrices or nanoporous glass, which created Sn opal, Sn in porous glass, Pb opal, and Pb in porous glass respectively. Thermal and magnetic properties of our samples can be measured by heat capacity, ac susceptibility, and dc magnetization. We discovered that the characters of type II superconductor exist in these samples, such as the upper critical field, flux pinning effect, positive curvature, and flux jumps.
    The upper critical field higher than critical field of bulk can be estimated by higher fields region of H-Tc diagram, and positive curvature can be observed from lower fields part. The existence of flux pinning effect was proved by M-T measurement. Flux jumps can be observed on hysteresis loops, which were successfully simulated using the adiabatic approximation which was developed for type-II superconductors. Besides, we studied frequency dependence of critical temperatures, and calculated the thermal activation energy at the static fields. We tried to make Pb in porous glass fixed in high pressure cell and measured dc magnetization, which revealed that both critical temperature and critical field lowered under high pressure.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 導論 1 第二章 基礎理論 2 2.1 超導熱力學理論 2 2.2 麥斯納效應 6 2.3 磁熱不穩定性 9 2.4 高壓效應 13 第三章 儀器量測原理 20 3.1 PPMS 20 3.1.1 溫度控制模式 21 3.1.2 磁場控制模式 22 3.1.3 氣壓控制模式 23 3.1.4 比熱量測原理 25 3.1.5 交流磁化率量測原理 26 3.2 SQUID 27 3.2.1 溫度操控機制 28 3.2.2 磁場操控機制 30 3.2.3 高壓巢室套件 31 第四章 樣品製備 42 4.1 奈米玻璃球陣列 42 4.2 奈米多孔隙玻璃基架 43 第五章 實驗結果與討論 48 5.1 Sn opal 48 5.2 Sn in porous glass(18~20nm) 58 5.3 Sn in porous glass(7nm) 64 5.4 Pb opal 68 5.5 Pb in porous glass(7nm) 78 5.5.1 磁滯曲線的理論擬合 78 5.5.2 高壓效應 86 第六章 結論 98 參考文獻 99

    1. C. Tien, E. V. Charnaya, D. Y. Xing, A. L. Pirozerskii, Yu. A. Kumzerov, Y. S. Ciou, and M. K. Lee Phys. Rev. B 83, 014502 (2011)
    2. C. Tien, A. L. Pirozerskii, E. V. Charnaya, D. Y. Xing, Y. S. Ciou, M. K. Lee, and Y. A. Kumzerov J. Appl. Phys. 109, 053905 (2011)
    3. V. V. Chabanenko, A. I. D’yachenko, M. V. Zalutskii, V. F. Rusakov, H. Szymczak, S. Piechota, and A. Nabialek J. Appl. Phys. 88, 5875 (2000)
    1. K. H. Muller and C. Andrikidis Phys. Rev. B 49, 1294 (1994)
    2. K. Tenya, I. Kawasaki, K. Tameyasu, S. Yasuda, M. Yokoyama, H. Amitsuka, N. Tateiwa, and T.C. Kobayashi Physica B 359 (2005)
    3. J. A. Woollam, R. B. Somoano, and P.O'Connort Phys. Rev. Lett. 32, 13 (1974)
    4. S. Theodorakis, and Z. Tesanovic, Phys. Rev. B 40, 10 (1989)
    5. L.E. Delong, D. Togliatti, G.W. Lehman, W.K. Kwok, G.W. Crabtree, K.G. Vandervoort D.G. Hinks Physica B 163 (1990)
    6. A.E. Aliev, S.B. Lee, A.A. Zakhidov, R.H. Baughman, Physica C 453(2007)
    7. M.J.Qin, and X.X.Yao Physica C 282 (1997)
    8. Jagdish Kumar, Devina Sharma, P.K. Ahluwalia, and V.P.S. Awana Enhanced superconducting performance of melt quenched Bi2Sr2CaCu2O8 (Bi-2212) superconductor (2012)
    9. V. Mihalache, V. Sandu, G. Aldica, and J. R. Groza Journal of Physics: Conference Series 97, 012166(2008)
    10. M. Nikolo, and R. B. Goldfarb, Phys. Rev. B 39, 10 (1989)
    11. K. H. Mu ̈ller, Physica C 168, 585 (1990)
    12. Y. S. Ciou, C. Tien, E. V. Charnaya, D. Y. Xing, M. K. Lee, Y. A. Kumzerov, and A. L. Pirozerskii Physica C 477 (2012)
    13. I. N. Askerzade, A. Gencer, and N. Gu ̈clu ̈ Supercond. Sci. Technol. 15 (2002)
    14. T. Tomita, J. J. Hamlin, and J. S. Schilling, D. G. Hinks, and J. D. Jorgensen Phys. Rev. B 64, 092505(2001)
    15. Z.Y. Zeng, Y. Yu, A.M. Sun, X.N. Xu, S.Y. Ding, and X.X. Yao Physica C 272 (1996)
    16. B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu Phys. Rev. B 68, 014512(2003)
    17. E. V. Charnaya, C. Tien, K. J. Lin, C. S. Wur, and Y. A. Kumzerov Phys. Rev. B 58, 467 (1998)
    18. P. Javorsky ́, E. Colineau, F. Wastin, F. Jutier, J.-C. Griveau, P. Boulet, R. Jardin, and J. Rebizant Phys. Rev B 75, 184501(2007)
    19. Fedor Go ̈mo ̈ry Supercond. Sci. Technol. 10 (1997)
    20. Y. S Ciou, M. K Lee, E. V Charnaya, C. Tien, L. J Chang, Y. A Kumzerov, and M. I Samoylovich Supercond. Sci. Technol. 26 (2013)
    21. M. K. Lee, E. V. Charnaya, C. Tien, L. J. Chang, and Y. A. Kumzerov J. Appl. Phys. 113, 113903 (2013)
    22. G. Prando, P. Carretta, R. D. Renzi, S. Sanna, H. J. Grafe, S. Wurmehl, and B. Bu ̈chner Phys. Rev. B 85, 144522 (2012)
    23. N. A. H. K. Rao, J. C. Garland, and D. B. Tanner Phys. Rev. B 29, 1214 (1984)
    24. W. H. Li, C. W. Wang, C. Y. Li, C. K. Hsu, C. C. Yang, and C. M. Wu Phys. Rev. B 77, 094508 (2008)
    25. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos Appl. Phys. Lett. 101, 052605 (2012)
    26. D. L. Deckerit, D. E. Mapother, and R. W. Shaw Phys. Rev. 112, 6 (1958)
    27. T. Ishida, and R. B.Goldfarb Phys. Rev. B 41, 8937(1990)
    28. C. Tien, J. S. Hwang, K. J. Lin, C. S. Wur, E. V. Charnaya, and Yu. A. Kumzerov Phys. Rev. B 54, 11880 (1996)
    29. E. D. Bauer, J. D. Thompson, J. L. Sarrao, L. A.Morales, F. Wastin, J. Rebizant, J. C. Griveau, P. Javorsky, P. Boulet, E. Colineau, G. H. Lander, and G. R. Stewart Phys. Rev. Lett. 93, 147005 (2004)
    30. E.H. Rhoderick Proc. Roy. Soc. Lond A 267 (1962)
    31. J. Bardeen, L.N. Cooper, and J.R. Schrieffer Phys. Rev. 108, 1175 (1957)
    32. M.K. Wilkinson C. G. Shull, L. D. Roberts, and S. Bernstein Phys. Rev. 97, 889 (1955)
    33. W.S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler Phys. Rev. 102, 656 (1956)
    34. C. Tien, C. S. Wur, K. J. Lin, E. V. Charnaya, and Y. A. Kumzerov Phys. Rev. B 61 14833 (2000)
    35. E. V. Charnaya, C. Tien, C. S. Wur, and Y. A. Kumzerov Physica C 269, 313 (1996)
    36. M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu, P. Schiffer, T. E. Mallouk, and M. H. W. Chan Appl. Phys. Lett. 83 1620 (2003)
    37. R. P. Barber, and R. C. Dynes Phys. Rev. B 48, 10618 (1993)
    38. N. Kurita, M. Kimata, K. Kodama, A. Harada, M. Tomita, H. S. Suzuki, T. Matsumoto, K. Murata, S. Uji, and T. Terashima Phys. Rev. B 83, 100501 (2011)
    39. S. Bose, P. Raychaudhuri, R. Banerjee, and P. Ayyub Phys. Rev. B 74, 224502 (2006)
    40. G. Deutscher, O. E. Wohlman, and Y. Shapira Phys. Rev. B 22, 4264 (1980)
    41. J. Jaroszynski, F. Hunte, L. Balicas, Y.J. Jo, I. Raičević, A. Gurevich, and D. C. Larbalestier Phys. Rev. B 78, 174523 (2008)
    42. M. Strongin, O. F. Kammerer, J. E. Crow, R. D. Parks, D. H. Douglass Jr., and M. A. Jensen Phys. Rev. Lett. 21 1320 (1968)
    43. W. H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee Phys. Rev. B 68, 184507 (2003)
    44. W. H. Li, C. C. Yang, F. C. Tsao, S. Y. Wu, P. J. Huang, M. K. Chung, and Y. D. Yao Phys. Rev. B 72, 214516 (2005)
    45. B. Mühlschlegel, D. J. Scalapino, and R. Dento, Phys. Rev. B 6, 1767 (1972)
    46. F. Y. Wu, C. C. Yang, C. M. Wu, C. W. Wang, and W. H. Li J. Appl. Phys. 101, 09G111 (2007).
    47. A. Gerber, J. N. Li, Z. Tarnawski, J. J. M. Franse, and A. A. Menovsky Phys. Rev. B 47, 6047 (1993)
    48. S. H´ebert, L. Van Look, L. Weckhuysen, and V. V. Moshchalkov Phys. Rev. B 67, 224510 (2003)
    49. R. F. Jardim, C. H.Westphal, C. C. Becerra, and A. Paduan J. Appl. Phys. 81, 4250 (1997)
    50. C. Romero-Salazar, F. Morales, R. Escudero, A. Dur´an, O. A. Hern´andez-Flores Phys. Rev. B 76, 104521 (2007)
    51. J. Y. Lee, H. J. Lee, M. H. Jung, S. I. Lee, E. M. Choi, and W. N. Kang J. Appl. Phys. 107, 013902 (2010).
    52. A. Nabialek, M. Niewczas, H. Dabkowska, A. Dabkowski, J. P. Castellan, and B. D. Gaulin Phys. Rev. B 67, 024518 (2003)
    53. A. V. Silhanek, S. Raedts, and V. V. Moshchalkov Phys. Rev. B 70, 144504 (2004)
    54. C. Ebner, and D. Stroud Phys. Rev. B 28, 5053 (1983)
    55. D. Livingston Appl. Phys. Lett. 8, 319 (1966)
    56. C. Keller, H. Kupfer, A. Gurevich, R. Meier-Hirmer, T. Wolf, R. Flukiger, V. Selvamanickam, and K. Salama J. Appl. Phys. 68, 3498 (1990)
    57. You-He Zhou, and Xiaobin Yang Phys. Rev. B 74, 054507 (2006)
    58. R. G. Mints Phys. Rev. B 53, 12311 (1996)
    59. L. Wipf Phys. Rev. 161, 404 (1967)
    60. C. P. Bean Rev. Mod. Phys. 36, 31 (1964)
    61. J. H. P. Watson Phys. Rev. 2, 1282 (1970)
    62. M. W. McElfresh, J. D. Thompson, J. O. Willis, M. B. Maple, T. Kohara, and M. S. Torikachvili Phys. Rev. B 35, 43 (1987)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE