簡易檢索 / 詳目顯示

研究生: 李岳勳
Lee, Yueh-Hsun
論文名稱: 微/奈米化氧化亞銅之電化學沈積行為及其在鋰離子二次電池之應用
Electrodeposition Behavior of Micron/nanosized Cu2O and the Application in Li-ion Batteries
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 131
中文關鍵詞: 氧化亞銅薄膜鋰離子電池奈米結構
外文關鍵詞: nanostructure, Li-ion batteries, thin film, cuprous oxide
相關次數: 點閱:77下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 純相氧化亞銅薄膜可以電化學沈積法製備於鍍白金之矽基板上,經由XRD與XPS的結構分析確認此沈積膜為一單相組成。薄膜之織構可因溶液之pH值或過電位之變化而轉變。具(200)織構之氧化亞銅薄膜之晶粒型態為四面體之金字塔型,而具(111)織構之薄膜晶粒型態則為三角形。具(200)織構之氧化亞銅薄膜之成長行為屬柱狀晶成長,而具(111)織構之薄膜的成長則由二次成核與成長所主導。
    由循環伏安法及充放電循環測試結果,發現氧化亞銅薄膜與鋰金屬間之可逆電化學反應是發生於兩者間的氧化還原。改變沈積時間可調整薄膜厚度,而由厚度差異所引起之不同的電阻極化現象則使不同厚度薄膜之電化學性質深受影響。溶液溫度對薄膜之晶粒大小及後續電化學性質的影響並不明顯。具(200)織構之薄膜因其相異之微結構,而使其較具(111)織構之薄膜有更佳的電化學性質。隨著充放電速率提高而下降的電容量,顯示由於氧化亞銅本身高電阻率所造成的電阻極化,將是氧化亞銅實際應用在鋰離子電池上的最大限制。
    本研究是第一個探討有關氧化亞銅奈米線與鋰離子之電化學性質及其在電池之應用。結合模板輔助成長,利用電化學沈積法可成功製備出直徑與長度分別為60及450 nm之準直成長的純相氧化亞銅奈米線。循環伏安掃瞄的結果顯示奈米線與鋰金屬間具有可逆反應性,其反應行為與氧化亞銅薄膜相似。而充放電循環測試結果則顯示此奈米線陣列經100次循環後,其電容量仍可維持在330 mAh/g。
    在外加電流密度為0.05 mA/cm2的條件下,所得到的奈米線是純相的氧化亞銅。而當電流密度提高至15 mA/cm2時,所得者為純銅的奈米線。而在介於這兩個電流密度之間沈積,可得銅與氧化亞銅的複合相,且銅的含量隨電流密度的增加而提高。TEM的觀察結果顯示複合相奈米線是由獨立的銅與氧化亞銅的奈米晶粒所組成,與複合相薄膜的層狀結構不同。而在生成複合相奈米線時會產生自發性之電極電位規則震盪,乃因表面局部pH值之變化所引起的交替性電化學反應所導致。
    循環伏安掃瞄結果顯示,單相氧化亞銅與銅/氧化亞銅複合相奈米線,其與鋰金屬間之電化學反應的方式相當類似。但複合相奈米線的放電電容量隨著銅含量的提高而下降,此乃肇因於銅奈米晶粒在奈米線中係扮演鋰離子擴散的阻礙者。雖然高銅含量降低了電容量,但由於銅提高奈米線之平均導電率進而降低了電阻極化,可大幅改善其在高放電速率下之電容量的衰退。

    The sole Cu2O films were fabricated onto the platinum coated silicon wafer. The structural characterization by XRD and XPS indicates that pure Cu2O films were obtained. The texture of the films could be modified by simply changing the bath pH or overpotential. The crystal shape of the (200) preferred films was dominated by four-sided grains, while that of the (111) preferred films was predominated by three-sided grains. It was found that the growth of the (200) preferred films adopted by the columnar growth with a coalescence mechanism. However, the (111) preferred films followed a mechanism of secondary nucleation and growth.
    The electrochemical characteristics by CV and cycling tests indicated that the reversible reaction of Cu2O/Li cells is attributed to the redox reaction between Cu2O and Li. The thickness of films could be modulated simply by changing the deposition durations. The dependence of film thickness on the reversible capacity was affected by the resistance polarization. The influence of bath temperature on the grain size of films and their consequent effect on the discharge capacity may be neglected. The results of rate capability implied that the poor conductivity was the main factor affecting the electrochemical behavior of Cu2O films for the Li-ion batteries applications. It was also found that the (200) textured films exhibit better electrochemical property toward Li than the (111) textured ones due to the different microstructure features originating from different growth behavior.
    This study was the first investigation on the electrochemical performance of Cu2O nanorods for Li ion battery application. The template-mediated electroplating has been applied to fabricate Cu2O nanorod arrays. The morphological observation showed that the nanorods with 60nm diameter and 450nm length were grown perpendicularly to the substrate. The CV sweeping indicated a reversible electrochemical reactivity between Cu2O nanorods and Li. The cycling test showed that the nanorod arrays exhibit a capacity of 330 mAh/g after 100 cycles.
    The pure Cu2O nanorods were obtained at low current density, of 0.05mA/cm2, while pure Cu nanorods appeared under high current density, of 15mA/cm2. Between these two current densities, the Cu/Cu2O composite nanorods were obtained and the content of Cu increased as the applied current density increased. The TEM observation indicated that the composite nanorods are composed of isolated Cu and Cu2O grains, which contradicted to the layered structure observed in Cu/Cu2O thin films. The periods of spontaneous oscillation were a function of the applied current density. The variation of local pH was the main reason resulting in the occurrence of spontaneous potential oscillations in the present system.
    For both the pure Cu2O and Cu/Cu2O composite nanorods, the CV sweeping showed the similar electrochemical reactions toward Li during discharge/recharge cycling. The reversible discharge capacity decreased with the Cu content of nanorods due to the suppressed Li ion diffusion coefficient. Although the composite nanorods with highest Cu content exhibited the lowest discharge capacity, the nanorods revealed the highest rate capability due to the higher electrical conductivity that minimizes the resistance polarization.

    中文摘要……………………………………………………………….. I 英文摘要……………………………………………………………….. III 誌謝……………………………………………………………………... V 總目錄………………………………………………………………….. VI 表目錄………………………………………………………………….. IX 圖目錄………………………………………………………………….. X 英漢名詞與符號對照表……………………………………………….. XVII 第一章 緒論………………………………………………………….. 1 1-1 鋰離子電池之發展沿革與現狀………………………………... 1 1-2 3d過渡金屬氧化物於鋰離子電池陽極材料之應用…………… 5 1-3 薄膜鋰離子電池與奈米科技之應用……………………..……. 11 1-4 研究動機與目的………………………………………………... 15 第二章 理論基礎與前人文獻…………………………………….. 16 2-1 電化學基本理論………………………………………………. 16 2-2 金屬氧化物電化學沈積理論…………………………………. 19 2-3 氧化亞銅之電化學沈積………...…………………………...... 21 2-4 氧化鋁模板輔助成長…………………………………………. 27 2-5 氧化亞銅作為鋰離子電池電極材料之電化學行為…………. 30 第三章 實驗方法與步驟………………………………………….. 34 3-1 實驗流程圖……………………………………………………. 34 3-2 氧化亞銅薄膜之沈積………………………….……………… 35 3-2-1 起始藥品…………………………………………………… 35 3-2-2 電化學沈積溶液之配置…………………………………… 35 3-2-3 電化學沈積基材之準備…………………………………… 35 3-2-4氧化亞銅薄膜之被覆.………………………………………. 35 3-3 沈積分析…………….………………………………………… 36 3-3-1沈積重量之量測……………………………………… 36 3-3-2 晶體繞射分析(XRD)………………………………………. 36 3-3-3穿透式電子顯微鏡分析(TEM)..…………………………… 36 3-3-4 掃瞄式電子顯微鏡觀察(SEM)……………………………. 37 3-3-5 原子力顯微鏡表面分析(AFM)……………………………. 37 3-3-6 X-光光電子光譜儀(XPS)……...…………………………… 37 3-3-7 循環伏安掃瞄(CV)……………… ………………………... 37 3-3-8 電化學性質測試…………...………………………………. 38 3-4 奈米線製備 ……………………………………………………. 38 3-4-1 氧化鋁模板製備…...………………………………………. 38 3-4-2 奈米線之沈積……………………………………………… 38 第四章 氧化亞銅薄膜之成長與其電化學性質..…………………… 40 4-1 薄膜之成長與結構解析…...…………………………………… 40 4-1-1氧化亞銅鍍膜之成長……….……………………………… 40 4-1-2 氧化亞銅鍍膜之結構解析………………….……………… 43 4-2 鍍膜織構變化與成長行為..…………..……………..…………. 49 4-2-1 鍍膜織構變化……...………………………………………. 49 4-2-2 具不同織構之氧化亞銅薄膜的表面型態………………… 52 4-2-3 具不同織構之氧化亞銅薄膜的成長行為………………… 56 4-3 作為鋰離子電池陽極材料之電化學行為分析...……………… 66 4-3-1 氧化亞銅薄膜之電化學反應性…………………………… 66 4-3-2 氧化亞銅之薄膜特性對電化學性質的影響……………… 70 4-3-3 薄膜織構對電化學性質之影響……….…………………... 75 4-4 小結…………………………………………………………….. 79 第五章 氧化亞銅奈米線成長與電化學性質…...…………………… 80 5-1 單相奈米線成長與結構之解析……………………………….… 80 5-1-1 氧化亞銅奈米線之型態及其成長………………………… 80 5-1-2 氧化亞銅奈米線之結構解析……………………..……….. 84 5-2 單相奈米線電化學性質………………………………………. 87 5-2-1氧化亞銅奈線電化學反應………………………………….. 87 5-2-2氧化亞銅奈米線之電化學循環性………………………….. 89 5-3 複合相奈米線之成長與結構解析…………………………….. 93 5-3-1 複合相奈米線之成長……………………………………… 93 5-3-2複合相奈米線之結構解析.…………………………………. 97 5-4 複合相奈米線電化學性質……………………………………... 103 5-4-1 複合相奈米線之電化學反應性.……………………..……. 103 5-4-2 複合相奈米線之電化學循環性測試…………………..….. 109 5-4-3 複合相奈米線擴散速率量測…………..………………….. 109 5-4-4 複合相奈米線不同放電速率下之電容量的變化………… 110 5-5 小結……………………………………..………………………. 115 第六章 總結論…………………………………………..……………. 116 參考文獻…………………………..……………………………………. 118 個人資料……………………………………..…………………………. 129

    1. H. Takeshita, Portable Li-ion, worldwide. Proc. Conf. Power 2000, San Diego, 25 September 2000.
    2. H. Ikeda, T. Saito, H. Tamura, in Proc. Managanse Dioxide Symp. Vol. 1(eds A Kozawa. & R. H. Brodd)(IC sample Office, Cleveland, OH, 1975).
    3. B. C. H. Steele, in Fast Ion Transport in Solids (ed W. Van Gool) 103-109(North-Holland Amsterdam, 1973).
    4. B. M. L. Rao, R. W. Francis, H. A. Christoper, “Lithium-aluminum electrode”, J. Electrochem. Soc., 124, 1490(1977).
    5. D.W. Murphy, F. J. Disalvo, J. N. Carides, J. V. Waszczak, “Topochemical reactions of rutile related structure with lithium” Mat. Res. Bull., 13, 1395(1978)
    6. M. Lazzari & B. Scrosati, “A cyclable lithium organic electrolyte cell based on two intercalation electrodes”, J. Electrochem. Soc., 127, 773(1980)
    7. M. Mohri, “Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. J. Power Sources, 26, 545(1989)
    8. T. Nagaura, K. Tozawa, “Lithium ion rechargeable battery” Prog. Batteries Solar cells, 9, 209(1990)
    9. J. H. Kim, G. J. Jeong, Y. W. Kim, H. J. Sohn, C. W. Park, C. K. Lee, “Tin-based oxide as anode materials for lithium secondary batteries”, J. Electrochem. Soc., 150, A1544(2003).
    10. 楊模樺,”鋰離子二次電池負極新材料介紹-含錫氧化物”,工業材料,133,81(1998)
    11. P. Poizot, S. Laruelle, S. Grugeon and J-M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries” Nature, 407, 496(2000)
    12. D. Larcher, G. Sudant, J-B Leriche, Y. Chabre, J-M. Tarascon, “The electrochemical reduction of Co3O4 in a lithium cell”, J. Electrochem. Soc., 149, A234(2002)
    13. K. F. Chiu, C. Y. Yang, C. M. Lin, “The electrochemical performance of Bias-Sputter-Deposited nanocrystalline nickel oxide thin film toward lithium.”, J. Electrochem. Soc., 149, A251(2002)
    14. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J-M. Tarascon, “Particle size effects on the electrochemical performance of copper oxides toward lithium”, J. Electrochem. Soc., 148, A285(2001)
    15. J-M. Tarascon, M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414, 359(2001)
    16. A. Salvatore Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. V. Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices”, Nature Mat., 4, 366(2005)
    17. H. Ikeda, in Proc. 42nd Battery Symp. Yokohama, Japan, 282(2004)
    18. M. Green, E. Fielder, B. Scrosati, M. Wachtler, S. J. Moreno, “Structured silicon anodes for lithium battery applications”, Electrochem. Solid-State Lett., 6, A75(2003)
    19. D. Larcher, “Effect of particle size on lithium intercalation into α-Fe2O3”, J. Electrochem. Soc., 150, A133(2003)
    20. A. J. Bard, L. R. Faulkner, Electrochemical method, Wiley, New York, 21(1980)
    21. S. Peulon, D. Lincot, “Mechanism study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions”, J. Electrochem. Soc., 145, 864(1998)
    22. 張韶廷,”奈米晶粒氧化錫在硝酸溶液之電化學沈積行為及其於二次鋰離子二次電池之應用”,國立成功大學博士論文,2005
    23. P. R. Markworth, X. Liu, J. Y. Dai, W. Fan, T. J. Marks, R. P. H. Chang, “Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO(110)”, J. Mater. Res., 16, 2408(2001)
    24. M. Ristov, GJ. Sinadinovski, M. Mitreski, “Chemically deposited Cu2O thin films as as oxygen pressure sensor.”, Thin Solid Films, 167, 309(1988)
    25. B. Balamurugan, B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin film prepared by activated reactive ecaporation.”, Thin Solid Films, 396, 90(2001)
    26. T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, S. Hirono, “Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method.”, Electrochem. Commun., 4, 468(2002)
    27. P. Taneja, R. Chandra, R. Banerjee, P. Ayyub, “Structure and properties of nanocrystalline Ag and Cu2O by high pressure sputtering.”, Scripta Mater., 44, 1915(2001)
    28. S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, N. Parikh, B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation.”, J. Appl. Phys., 72, 3765(1992)
    29. Y. Z. Hu, R. Sharanpani, S. P. Tay, “In situ rapid thermal oxidation and reduction of copper thin films and their applications in ultralarge scale intergration”, J. Electrochem. Soc., 148, G669(2001)
    30. T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran, M. J. Chockalingam, “Galvanostatic deposition and characterization of cuprous oxide thin films “ J. Crystal Growth, 216, 304(2000)
    31. R. Liu, E. W. Bohannan, J. A. Switzer, F. Oba, F Erenst, “Epitaxial electrodeposition of Cu2O films onto InP (001)”, Appl. Phys. Lett., 83, 1944(2003)
    32. J. Lee, Y. Tak, “Electrochemical deposition of a single phase of pure Cu2O films by current modulation methods”, Electrochem. Solid-State Lett., 3, 69(2000)
    33. J. Lee, Y. Tak, “Epitaxial growth of Cu2O (111) by electrodeposition”, Electrochem. Solid-State Lett., 2, 559(1999)
    34. A. A. Vertegel, M. G. Shumsky, J. A. Switzer, “Electrochemical growth of a Cu2O/PbS epitaxial heterojunction on single crystal Au(100)”, Chem. Mater., 12, 596(2000)
    35. P. R. Markworth, R. P. H. Chang, Y. Sun, G. K. Wong, J. B. Ketterson, ”Epitaxial stabilization of orthorhombic cuprous oxide films on MgO(110)”, J. Mater. Res., 16, 914(2001)
    36. Y. Sun, K. Rivkin, J. Chen, J. B. Ketterson, “Strain splitting of 1s yellow orthoexcition of epitaxial orthorhombic Cu2O films on MgO [110]”, Phys. Rev. B, 66, 245315(2002)
    37. R. Liu, F. Oba, E. W. Bohannan, F. Ernst, J. A. Switzer, “Shape control in epitaxial electrodeposition: Cu2O nanocubes on InP(001)”, Chem. Mater., 15, 4882(2003)
    38. J. A. Switzer, C. J. Hung, L. Y. Huang, F. S. Miller, Y. Zhou, E. R. Raub, M. G. Shumsky, E. W. Bohannan, “Potential oscillation during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures”, J. Mat. Res., 13, 909(1998).
    39. W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng, “Synthesis and characterization of Cu2O nanowires by a novel reduction route.”, Adv. Mater., 14, 67(2002)
    40. Y. Xiong, Z. Li, R. Zhang, Y. Xie, J. Yang, C. Wu, “From complex chains to 1 metal oxides: A novel strategy to Cu2O nanowires.”, J. Phys. Chem. B, 107, 3697(2003)
    41. M. Cao, C. Hu, Y. wang, Y. Guo, C. Guo, E. wang, “A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods.”, Chem. Commun, 1884(2003)
    42. J. Oh, Y. Tak, J. Lee, ”Electrodeposition of Cu2O nanowires using nanoporous alumina template”, Electrochem. Solid-State Lett., 7, C27(2004)
    43. P. M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen, K. Nikitin, R. E. Palmer, J. A. Preece, S. D. Evans, D. Fitzmaurice, “Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography”, Langmuir, 20, 2766(2004)
    44. Y. W. Su, C. S. Wu, C. C. Chen, C. D. Chen, ”Creating sub-surface channels in PMMA with ion beam lithography in only one step”, Adv. Mater., 15, 49(2003)
    45. M. Rolandi, I. Suez, H. J. Dai, J. M. J. Frechet, ”Dendrimer monolayers as negative and positive tone resists for scanning probe lithography”, Nano Lett., 4, 889(2004)
    46. D. Dobrev, J. Vetter, N. Angert, R. Neumann, “Growth of ion single crystal in the etched ion tracks of polymer foils”, Appl. Phys. A, A72, 729(2001)
    47. D. Almawlawi, K. A. Bosnick, A. Osika, M. Moskovits, “Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks”, Adv. Mater., 12, 1252(2000)

    48. Y. Yang, H. L. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, X. M. Bao, “CdS nanocrystallites prepared by chemical and physical template”, Acta. Mater., 50, 5085(2002)
    49. A. E. Saunders, P. S. Shah, M. B. Sigman, T. Hanrath, H. S. Hwang, K. T. Lin, K. P. Johnston, B. A. Korgel, “Inverse opal nanocrystal superlattice films”, Nano Lett., 4, 1943(2004)
    50. S. L. Kuai, V. V. Truong, A. Hache, X. F. Hu, “A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates”, J. Appl. Phys., 96, 5982(2004)
    51. F. Keller, M. S. Hunter, D. L. Robinson, “Structural features of oxide coating on aluminum”, J. Electrochem. Soc., 100, 411(1953)
    52. H. Masuda, K. Fukuda, “Ordered metal nanohole arrays made by a 2-step replication of honeycomb structure of anodic alumina”, Science, 268, 5216(1995)
    53. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, “Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al”, J. Electrochem. Soc., 148, B152(2001)
    54. Y. C. Wang, I. C. Leu, M. H. Hon, “Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition”, J. Mater. Chem., 12, 2439(2002)
    55. M. T. Wu, I. C. Leu, J. H. Yen, M. H. Hon, “Preparation of Ni nanodot and nanowire arrays using porous alumina on silicon as a template without a conductive interlayer”, Electrochem. Solid-State Lett., 7, C61(2004)
    56. C. C. Huang, I. C. Leu, K. Z. Fung, “Fabrication of delta-Bi2O3 nanowires”, Electrochem. Solid-State Lett., 8, A204(2005)
    57. B. Laik, P. Poizot, J.-M. Tarascon, “The electrochemical quartz crystal microbalance as a means for studying the reactivity of Cu2O toward lithium”, J. Electrochem. Soc., 149, A251(2002)
    58. J. Morales, L. Sánchez, S. Bijani, L. Martínez, M. Gabás, J. R. Ramos-Barrado, “Electrodeposition of Cu2O: An excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries”, Electrochem. Solid-State Lett., 8, A159(2005)
    59. Y. Zhou, J. A. Switzer, “Electrochemical deposition and microstructure of copper (I) oxide films”, Scripta Mater., 38, 1731(1998)
    60. P. E. de Jongh, D. Vanmaekebergh, J. J. Kelly, “ Cu2O: electrodeposition and characterization“, Chem. Mater., 11, 3512 (1999)
    61. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, 1974, p.386
    62. C. D. Wager, W. M. Riggs, L. E. Davis, J. E. Moulder, G. E. Muilenber, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation Physics Electronics Division, (1979)
    63. A. E. Rakhshani, J. Varghese, “Galvanostatic deposition of Cu2O layer through the electrogeneration of base route”, J. Mater. Sci., 23, 3847 (1988)
    64. J. OM. Bockris, G. A. Razumney, Fundamental aspects of electrocrystallization, Plenum press, New York, 1967
    65. C. Jiang, T. Goto, T. Hirai, “Morphology and preferred orientation of titanium nitride plates prepared by chemical vapour deposition”, J. Mater. Sci., 29, (1994) 669
    66. N. A. Pangarov, “The crystal orientation of electrodeposited metals”, Electrochimica Acta, 7, 139(1962)
    67. N. A. Pangarovm, “On the crystal orientation of electrodeposited metals”, Electrochimica Acta, 9, 721(1964)
    68. J. M. Blocher, Jr, “Structure/property/process relationships in chemical vapor deposition CVD”, J. Vac. Sci. Technol., 11, 680(1974)
    69. W. A. Bryant, “Review: the fundamentals of chemical vapor deposition”, J. Mat. Sci., 12, 1285(1977)
    70. J. Chin, P. K. Gantzel, R. G. Hudson, “The structure of chemical vapor deposited silicon carbide”, Thin Solids Films, 40, 57(1977)
    71. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, “Searching for new amode materials for the Li-ion technology: time to deviate from the usual path”, J. Power Sources, 97-98, 235(2001)
    72. Y. Wang, Z. W. Fu, Q. Z. Qin, “A nanocrystalline Co3O4 thin film electrode for Li-ion batteries”, Thin Solid Films, 441, 19(2003)
    73. C. R. Sides, C. R. Martin, "Nanostructured electrode and the low-temperature performance of Li-ion batteries”, Adv. Mater., 17, 125(2005)
    74. C. J. Patrissi, C. R. Martin, “Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentaoxide”, J. Electrochem. Soc., 146, 3176(1999)
    75. G. Che, K. B. Jirage, E. R. Fisher, C. R. Martin, H. Yoneyama, “Chemical vapor deposition-based template synthesis of microtubular TiS2 battery electrode”, J. electrochem. Soc., 144, 4296(1997)

    76. M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, H. Yoneyama, “Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries”, J. Electrochem. Soc., 144, 1923(1997)

    77. L. F. Nazar, “Nanostructured materials for energy storage”, Int. J. Inorg. Mater. 3, 191(2001)
    78. M. Hirshes, “Nanoscale materials for energy storage”, Mater. Sci. Eng. B, 108, 1(2004)
    79. A. Armstrong, R. Armstrong, G. Ganales, J. R. Garcia, P. G. Bruce, “Lithium intercalation into TiO2-B nanowires”, Adv. Mater., 17, 862(2005)
    80. F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci, “Carbon metal fluoride nanocomposites: high capacity reversible metal fluoride conversion materials as rechargeable positive electrode for Li batteries.” J. Electrochem. Soc., 150, A1318(2003)
    81. J. Jamnik, J. Maier, “Nanocrystallinity effects in lithium battery materials. Aspect of nano-ionics. Part IV. Phys. Chem., 5, 5215(2003)
    82. J. Chen, L. Xu, W. Li, X. Gou, “α-Fe2O3 nanotubes in gas sensor and lithium-ion batteriey applications”, Adv. Mater., 17, 582(2005)
    83. Y. C. Zhou, J. A. Switzer, “Galvanostatic electrodeposition and microstructure of copper (I) oxide”, Mater. Res. Innovat., 2, 22(1998)
    84. S. Kenane, L. piraux, “Electrochemical self-assembly of Cu/Cu2O nanowires”, J. Mater. Res., 17, 401 (2002)
    85. J. A. Switzer, C. J. Hung, L. Y. Huang, E. R. Switzer, D. R. Kammler, T. D. Golden, E. W. Bohannan, “Electrochemical self-assembly of copper/cuprous oxide layered nanostructures”, J. Am. Chem. Soc., 120, 3530(1998)
    86. E. W. Bohanan, L. Y. Huang, F. S. Miller, M. G. Shumsky, J. A. Switzer, “In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu2O layered nanostructures”, Langmuir, 15, 813(1999)
    87. Y. Wang, Y. Cao, M. Wang, S. Zhong, M. Z. Zhang, Y. Feng, R. W. Peng, X. P. Hao, N. B. Ming, “Spontaneous formation of periodic nanostructured film by electrodeposition: experimental observations and modeling”, Phys. Rev. E, 69, 021607 (2004)
    88. X. M. Liu, Y. C. Zhou, “Electrochemical deposition and characterization of Cu2O nanowires”, Appl. Phys. A, 81, 685(2005)
    89. A. Débart, L. Dupont, P. Poizot, J-B Leriche, J. M. Tarascon, “A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium”, J. Electrochem. Soc., 148, A1266(2001)
    90. A. H. Whitehead, J. M. Elliott, J. R. Owen, “Nanostructured tin for use as negative electrode material in Li-ion.”, J. Power Sources, 81-82, 33(1999)
    91. L. Kavan, M. Gratzel, “Facile synthesis of nanoscystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett., 5, A39(2002)
    92. C. Dewan, D. Teeters, “Vanadia xerogel nanocathodes used in lithium microbatteries.”, J. Power Sources, 119-121, 310(2003)
    93. H. Yan, “Colloidal-crystal-template synthesis of ordered macroporous electrode materials for lithium secondary batteries.”, J. Electrochem. Soc., 150, A1102(2003)
    94. P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, “High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications.”, Nature Mater., 5, 567(2006)

    下載圖示 校內:2007-10-14公開
    校外:2008-10-14公開
    QR CODE