| 研究生: |
仲哲立 Chung, Che-Li |
|---|---|
| 論文名稱: |
以低壓化學氣相沉積法進行電鍍二氧化鉛直接轉換成鈣鈦礦並應用於太陽能電池 Direct Conversion of CH3NH3PbI3 by Low-pressure Chemical Vapor Deposition with Electrodeposition PbO2 for Perovskite Solar Cell |
| 指導教授: |
高騏
Gau, Chie |
| 共同指導教授: |
陳昭宇
Chen, Peter |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 電鍍沉積法 、二氧化鉛 、低壓化學氣象沉積法 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | Electrodeposition Deposition, Lead Dioxide, Low-Pressure Chemical Vapor Deposition, Perovskite Solar Cells |
| 相關次數: | 點閱:97 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電鍍法可以精確的控制沉積的速度,以及所合成的鈣鈦礦薄膜具有極佳的表面覆蓋率,故有機會將鈣鈦礦應置於大面積上,並且可以依據需要沉積的PbO2量來做控制,可以避免像旋轉塗步法,浪費不必要的Pb,使其有效控制鉛。然而傳統以電鍍法製備鈣鈦礦太陽能電池所耗費共需三種階段性步驟才能迫使PbO2轉換成鈣鈦礦材料,故本研究嘗試利用低壓化學氣相沉積法中所產生的HI蒸氣,來促使電鍍沉積之PbO2進行直接轉換成MAPbI3,以改善製程方式促使其成本下降,亦嘗試將其所合成之鈣鈦礦薄膜應用於太陽能電池上,並且探討不同鍍法、不同供給電量、不同電子傳輸層、不同導電基板對於鈣鈦礦材料以及元件之影響,最後與文獻比較不同電鍍法所製備之鈣鈦礦太陽能電池之差異。
而本研究成功以定電流電鍍法來沉積晶粒大小均勻的PbO2於式片表面,利於低壓化學氣相反應後的鈣鈦礦薄膜較平整緻密,且成功找出適合電鍍之電子傳輸層(SnO2)及導電基板(ITO),促使沉積出之PbO2之晶粒較為小顆且均勻分佈於式片表面,間接促使鈣鈦礦薄膜表面形貌緻密且均勻、Uv-vis吸收飽合、XRD較無未反應之PbI2殘留相,並且利用吾人之電鍍法所製備之鈣鈦礦太陽能電池,相較於文獻,其不僅節省了時間成本(節省1.3hr),亦可有效的提升鈣鈦礦元件之表現,促使鈣鈦礦元件表現為FF=56.28%,Jsc=18.69 mA/cm2,Voc=0.9V,元件效率可達到9.54%。
Because of electrodeposition method can accurately control the deposition speed, make highly flat and uniform perovskite film, this method has the potential to place the perovskite on a large area. However, the preparation of perovskite solar cells by electrodeposition should take three steps that convert lead dioxide into perovskite materials. Therefore, this study tries to use the HI vapor generated by the Low-Pressure Chemical Vapor Deposition to promote the direct conversion of lead dioxide into MAPbI3 in order to improve the process to reduce its cost, and try to fabricate perovskite to solar cell. In addition, exploring the influence of perovskite materials and the performance of solar cells by different electrodeposition methods, different Coulomb supply, different electron transport layers, and different transparent conductive oxide.
參考文獻
1. A. E. Becquerel, "Comptes Rendus de L’Academie des Sciences," pp. 561-567, 1839.
2. D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
3. D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976.
4. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, vol. 55, no. 13, pp. 1363-1365, 1989.
5. P. Verlinden et al., "Strategy, development and mass production of high-efficiency crystalline Si PV modules," Paper 4sMoO, vol. 1, no. 6, 2014.
6. "First Solar Press Release," August 5, 2014.
7. B. M. Kayes et al., "27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination," in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, pp. 000004-000008: IEEE.
8. M. Osborne, "Hanergys solibro has 20.5% CIGS solar cell verified by NREL," ed, 2014.
9. P. Chiu et al., "Continued progress on direct bonded 5J space and terrestrial cells," Proc. 40th IEEE PVSC, 2014.
10. K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, and T. Takamoto, "Proceedings, 9th international conference on concentrating photovoltaics systems," 2013.
11. F. Dimroth, "New world record for solar cell efficiency at 46%," Fraunhofer ISE: Freiburg, Germany, 2014.
12. R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module," in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011, pp. 2C-5O.
13. B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, no. 6346, p. 737, 1991.
14. M. Grätzel, "Photoelectrochemical cells," nature, vol. 414, no. 6861, p. 338, 2001.
15. P. Peumans and S. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells," Applied Physics Letters, vol. 79, no. 1, pp. 126-128, 2001.
16. J. Werner et al., "Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2," The journal of physical chemistry letters, vol. 7, no. 1, pp. 161-166, 2015.
17. M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003.
18. K. Emery and D. Myers, "Reference solar spectral irradiance: air mass 1.5," Center, RERD, Ed, 2009.
19. J. A. Carson, Solar cell research progress. Nova Publishers, 2008.
20. G. P. Smestad, Optoelectronics of solar cells. SPIE press, 2002.
21. S. Bai, Y. Jin, and F. Gao, "Organometal Halide Perovskites for Photovoltaic Applications," Advanced Functional Materials, pp. 535-566, 2015.
22. H.-S. Kim, S. H. Im, and N.-G. Park, "Organolead halide perovskite: new horizons in solar cell research," The Journal of Physical Chemistry C, vol. 118, no. 11, pp. 5615-5625, 2014.
23. G. Kieslich, S. Sun, and A. K. Cheetham, "Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog," Chemical Science, vol. 5, no. 12, pp. 4712-4715, 2014.
24. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, "Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites," Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
25. R. Cava et al., "Superconductivity near 30 K without copper: the Ba0. 6K0. 4BiO3 perovskite," nature, vol. 332, no. 6167, p. 814, 1988.
26. R. Cava et al., "Superconductivity near 70 K in a new family of layered copper oxides," Nature, vol. 336, no. 6196, p. 211, 1988.
27. A. Salau, "Fundamental absorption edge in PbI2: KI alloys," Solar Energy Materials, vol. 2, no. 3, pp. 327-332, 1980.
28. A. Chynoweth, "Surface space-charge layers in barium titanate," Physical Review, vol. 102, no. 3, p. 705, 1956.
29. J. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, p. 539, 1990.
30. C. Kagan, D. Mitzi, and C. Dimitrakopoulos, "Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors," Science, vol. 286, no. 5441, pp. 945-947, 1999.
31. G. C. Papavassiliou, "Three-and low-dimensional inorganic semiconductors," Progress in Solid State Chemistry, vol. 25, no. 3-4, pp. 125-270, 1997.
32. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3," Solid state communications, vol. 127, no. 9-10, pp. 619-623, 2003.
33. A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, "Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2)," in Meeting Abstracts, 2006, no. 7, pp. 397-397: The Electrochemical Society.
34. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (5)," in Meeting Abstracts, 2007, no. 8, pp. 352-352: The Electrochemical Society.
35. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
36. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
37. H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012.
38. J. Burschka et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, p. 316, 2013.
39. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, p. 1228604, 2012.
40. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells," Advanced Functional Materials, vol. 24, no. 21, pp. 3250-3258, 2014.
41. J. T.-W. Wang et al., "Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells," Nano letters, vol. 14, no. 2, pp. 724-730, 2013.
42. J. Y. Jeng et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
43. L. Etgar et al., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells," Journal of the American Chemical Society, vol. 134, no. 42, pp. 17396-17399, 2012.
44. S. Sun et al., "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science, vol. 7, no. 1, pp. 399-407, 2014.
45. O. Malinkiewicz et al., "Perovskite solar cells employing organic charge-transport layers," Nature Photonics, vol. 8, no. 2, p. 128, 2014.
46. J. You et al., "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility," 2014.
47. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells," Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, 2014.
48. H. Zhou et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, no. 6196, pp. 542-546, 2014.
49. D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature photonics, vol. 8, no. 2, p. 133, 2014.
50. Z. Xiao et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014.
51. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature nanotechnology, vol. 9, no. 11, pp. 927-932, 2014.
52. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, p. 897, 2014.
53. M. Xiao et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie, vol. 126, no. 37, pp. 10056-10061, 2014.
54. M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, p. 395, 2013.
55. M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, "High performance perovskite solar cells by hybrid chemical vapor deposition," Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014.
56. Y. Peng, G. Jing, and T. Cui, "A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12436-12442, 2015.
57. X. Li, D. Pletcher, and F. C. Walsh, "Electrodeposited lead dioxide coatings," Chemical Society Reviews, vol. 40, no. 7, pp. 3879-3894, 2011.
58. H. Chen, Z. Wei, X. Zheng, and S. Yang, "A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells," Nano Energy, vol. 15, pp. 216-226, 2015.