簡易檢索 / 詳目顯示

研究生: 仲哲立
Chung, Che-Li
論文名稱: 以低壓化學氣相沉積法進行電鍍二氧化鉛直接轉換成鈣鈦礦並應用於太陽能電池
Direct Conversion of CH3NH3PbI3 by Low-pressure Chemical Vapor Deposition with Electrodeposition PbO2 for Perovskite Solar Cell
指導教授: 高騏
Gau, Chie
共同指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 電鍍沉積法二氧化鉛低壓化學氣象沉積法鈣鈦礦太陽能電池
外文關鍵詞: Electrodeposition Deposition, Lead Dioxide, Low-Pressure Chemical Vapor Deposition, Perovskite Solar Cells
相關次數: 點閱:97下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電鍍法可以精確的控制沉積的速度,以及所合成的鈣鈦礦薄膜具有極佳的表面覆蓋率,故有機會將鈣鈦礦應置於大面積上,並且可以依據需要沉積的PbO2量來做控制,可以避免像旋轉塗步法,浪費不必要的Pb,使其有效控制鉛。然而傳統以電鍍法製備鈣鈦礦太陽能電池所耗費共需三種階段性步驟才能迫使PbO2轉換成鈣鈦礦材料,故本研究嘗試利用低壓化學氣相沉積法中所產生的HI蒸氣,來促使電鍍沉積之PbO2進行直接轉換成MAPbI3,以改善製程方式促使其成本下降,亦嘗試將其所合成之鈣鈦礦薄膜應用於太陽能電池上,並且探討不同鍍法、不同供給電量、不同電子傳輸層、不同導電基板對於鈣鈦礦材料以及元件之影響,最後與文獻比較不同電鍍法所製備之鈣鈦礦太陽能電池之差異。
    而本研究成功以定電流電鍍法來沉積晶粒大小均勻的PbO2於式片表面,利於低壓化學氣相反應後的鈣鈦礦薄膜較平整緻密,且成功找出適合電鍍之電子傳輸層(SnO2)及導電基板(ITO),促使沉積出之PbO2之晶粒較為小顆且均勻分佈於式片表面,間接促使鈣鈦礦薄膜表面形貌緻密且均勻、Uv-vis吸收飽合、XRD較無未反應之PbI2殘留相,並且利用吾人之電鍍法所製備之鈣鈦礦太陽能電池,相較於文獻,其不僅節省了時間成本(節省1.3hr),亦可有效的提升鈣鈦礦元件之表現,促使鈣鈦礦元件表現為FF=56.28%,Jsc=18.69 mA/cm2,Voc=0.9V,元件效率可達到9.54%。

    Because of electrodeposition method can accurately control the deposition speed, make highly flat and uniform perovskite film, this method has the potential to place the perovskite on a large area. However, the preparation of perovskite solar cells by electrodeposition should take three steps that convert lead dioxide into perovskite materials. Therefore, this study tries to use the HI vapor generated by the Low-Pressure Chemical Vapor Deposition to promote the direct conversion of lead dioxide into MAPbI3 in order to improve the process to reduce its cost, and try to fabricate perovskite to solar cell. In addition, exploring the influence of perovskite materials and the performance of solar cells by different electrodeposition methods, different Coulomb supply, different electron transport layers, and different transparent conductive oxide.

    中文摘要 I Extended Abstract III 致謝 IX 目錄 XII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 太陽能電池之演進與發展 1 1.2 各類太陽能電池之原理 4 1.2.1 矽晶太陽能電池 4 1.2.2 染料敏化太陽能電池 5 1.3 太陽能電池元件量測原理 7 1.3.1太陽能光譜與空氣質量對太陽光照度之影響 7 1.3.2太陽能電池量測參數與原理 9 1.3.3 量子轉換效率量測原理 11 1.4 研究動機 12 第二章 文獻回顧 13 2.1 鈣鈦礦太陽電池之發展 13 2.2 一步沉積法 23 2.3 二步沉積法 24 2.4 溶液加工法 26 2.5 氣相沉積法 27 2.5.1 共蒸鍍法 27 2.5.2 化學氣相沉積法 30 2.5.3 低壓化學氣相沉積法 32 2.6 電鍍法 34 2.6.1 電鍍PbO2文獻及背景理論 35 2.6.2 電鍍PbO2製備鈣鈦礦太陽能電池 37 第三章 實驗方法與儀器分析 39 3.1 實驗儀器與藥品 39 3.2 實驗流程與計畫 41 3.3 鈣鈦礦電池元件製作 43 3.3.1 基板製備 43 3.3.2 電子傳輸層製備 44 3.3.2.1 TiO2多孔層 44 3.3.2.2 SnO2緻密層 44 3.3.3 電鍍PbO2 44 3.3.4 低壓氣相沉積鈣鈦礦薄膜 44 3.3.5 電動傳輸層(Spiro-OMeTAD)製備 45 3.3.6 電極製備 45 3.4 薄膜製程工作原理 45 3.4.1 三極式電鍍法 45 3.4.2 真空加熱爐 46 3.5 表面分析 48 3.5.1 紫外-可見光吸收光譜儀(UV-VIS spectroscopy) 48 3.5.2 掃瞄式電子顯微鏡(Scanning electron microscope, SEM) 48 3.5.3 X光繞射儀(X-Ray Diffraction, XRD) 49 3.5.4 能量散射光譜儀(Energy Dispersive Spectrometer, EDS) 50 3.6 元件光電特性量測 52 3.6.1 J-V特性曲線量測分析(Current density-voltage (J-V) measurement) 52 3.6.2 光電轉化效率量測(Incident photo-to current conversion efficiency (IPCE) measurement) 52 第四章 結果與討論 54 4.1 前言 54 4.2 以定電壓電鍍二氧化鉛對於鈣鈦礦材料及元件效率影響 54 4.2.1 定電壓電鍍PbO2以及反應成鈣鈦礦: I-T Curve、XRD、Crossection 54 4.2.2 定電壓電鍍不同時間之PbO2薄膜分析: SEM 58 4.2.3 定電壓電鍍不同時間之鈣鈦礦薄膜分析: SEM、XRD、UV-vis 60 4.2.4 定電壓電鍍不同時間之元件表現: J-V curve 63 4.3 以不同鍍法電鍍二氧化鉛對於鈣鈦礦材料及元件效率影響 65 4.3.1 不同鍍法之PbO2薄膜分析: V-T Curve、SEM 65 4.3.2 不同鍍法之鈣鈦礦薄膜分析: SEM、XRD、UV-vis 67 4.3.3 不同鍍法之元件表現: J-V curve 69 4.4 以定電流電鍍二氧化鉛對於鈣鈦礦材料及元件效率影響 71 4.4.1 定電流電鍍不同時間之PbO2薄膜分析: SEM 71 4.4.2 定電流電鍍不同時間之鈣鈦礦薄膜分析: SEM、XRD、UV-vis、Crossection 72 4.4.3 定電流電鍍不同時間之元件表現: J-V curve、IPCE 76 4.5 以不同電子傳輸層電鍍二氧化鉛對於鈣鈦礦材料及元件效率影響 79 4.5.1 不同電子傳輸層之PbO2薄膜分析: V-T Curve、SEM 79 4.5.2 不同電子傳輸層之鈣鈦礦薄膜分析: SEM、XRD、UV-vis 81 4.5.3 不同電子傳輸層之元件表現: J-V curve、IPCE 84 4.6 以不同導電基板電鍍二氧化鉛對於鈣鈦礦材料及元件效率的影響 86 4.6.1 不同導電基板之PbO2薄膜分析: V-T Curve、SEM 86 4.6.2 不同導電基板之鈣鈦礦薄膜分析: SEM、XRD、UV-vis、Crossection 88 4.6.3 不同導電基板之元件表現: J-V curve、IPCE 92 4.7 與文獻比較不同電鍍法製備鈣鈦礦太陽能電池之差異 95 4.7.1 不同電鍍法製備鈣鈦礦太陽能電池之製程比較 95 4.7.2 不同電鍍法製備鈣鈦礦薄膜之比較: XRD、SEM 97 4.7.3 不同電鍍法製備鈣鈦礦太陽能電池之比較 100 第五章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 104 參考文獻 105

    參考文獻
    1. A. E. Becquerel, "Comptes Rendus de L’Academie des Sciences," pp. 561-567, 1839.
    2. D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
    3. D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976.
    4. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, vol. 55, no. 13, pp. 1363-1365, 1989.
    5. P. Verlinden et al., "Strategy, development and mass production of high-efficiency crystalline Si PV modules," Paper 4sMoO, vol. 1, no. 6, 2014.
    6. "First Solar Press Release," August 5, 2014.
    7. B. M. Kayes et al., "27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination," in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, pp. 000004-000008: IEEE.
    8. M. Osborne, "Hanergys solibro has 20.5% CIGS solar cell verified by NREL," ed, 2014.
    9. P. Chiu et al., "Continued progress on direct bonded 5J space and terrestrial cells," Proc. 40th IEEE PVSC, 2014.
    10. K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, and T. Takamoto, "Proceedings, 9th international conference on concentrating photovoltaics systems," 2013.
    11. F. Dimroth, "New world record for solar cell efficiency at 46%," Fraunhofer ISE: Freiburg, Germany, 2014.
    12. R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module," in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011, pp. 2C-5O.
    13. B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, no. 6346, p. 737, 1991.
    14. M. Grätzel, "Photoelectrochemical cells," nature, vol. 414, no. 6861, p. 338, 2001.
    15. P. Peumans and S. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells," Applied Physics Letters, vol. 79, no. 1, pp. 126-128, 2001.
    16. J. Werner et al., "Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2," The journal of physical chemistry letters, vol. 7, no. 1, pp. 161-166, 2015.
    17. M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003.
    18. K. Emery and D. Myers, "Reference solar spectral irradiance: air mass 1.5," Center, RERD, Ed, 2009.
    19. J. A. Carson, Solar cell research progress. Nova Publishers, 2008.
    20. G. P. Smestad, Optoelectronics of solar cells. SPIE press, 2002.
    21. S. Bai, Y. Jin, and F. Gao, "Organometal Halide Perovskites for Photovoltaic Applications," Advanced Functional Materials, pp. 535-566, 2015.
    22. H.-S. Kim, S. H. Im, and N.-G. Park, "Organolead halide perovskite: new horizons in solar cell research," The Journal of Physical Chemistry C, vol. 118, no. 11, pp. 5615-5625, 2014.
    23. G. Kieslich, S. Sun, and A. K. Cheetham, "Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog," Chemical Science, vol. 5, no. 12, pp. 4712-4715, 2014.
    24. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, "Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites," Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
    25. R. Cava et al., "Superconductivity near 30 K without copper: the Ba0. 6K0. 4BiO3 perovskite," nature, vol. 332, no. 6167, p. 814, 1988.
    26. R. Cava et al., "Superconductivity near 70 K in a new family of layered copper oxides," Nature, vol. 336, no. 6196, p. 211, 1988.
    27. A. Salau, "Fundamental absorption edge in PbI2: KI alloys," Solar Energy Materials, vol. 2, no. 3, pp. 327-332, 1980.
    28. A. Chynoweth, "Surface space-charge layers in barium titanate," Physical Review, vol. 102, no. 3, p. 705, 1956.
    29. J. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, p. 539, 1990.
    30. C. Kagan, D. Mitzi, and C. Dimitrakopoulos, "Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors," Science, vol. 286, no. 5441, pp. 945-947, 1999.
    31. G. C. Papavassiliou, "Three-and low-dimensional inorganic semiconductors," Progress in Solid State Chemistry, vol. 25, no. 3-4, pp. 125-270, 1997.
    32. K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3," Solid state communications, vol. 127, no. 9-10, pp. 619-623, 2003.
    33. A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, "Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2)," in Meeting Abstracts, 2006, no. 7, pp. 397-397: The Electrochemical Society.
    34. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (5)," in Meeting Abstracts, 2007, no. 8, pp. 352-352: The Electrochemical Society.
    35. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    36. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
    37. H.-S. Kim et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, p. 591, 2012.
    38. J. Burschka et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, p. 316, 2013.
    39. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, p. 1228604, 2012.
    40. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells," Advanced Functional Materials, vol. 24, no. 21, pp. 3250-3258, 2014.
    41. J. T.-W. Wang et al., "Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells," Nano letters, vol. 14, no. 2, pp. 724-730, 2013.
    42. J. Y. Jeng et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
    43. L. Etgar et al., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells," Journal of the American Chemical Society, vol. 134, no. 42, pp. 17396-17399, 2012.
    44. S. Sun et al., "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science, vol. 7, no. 1, pp. 399-407, 2014.
    45. O. Malinkiewicz et al., "Perovskite solar cells employing organic charge-transport layers," Nature Photonics, vol. 8, no. 2, p. 128, 2014.
    46. J. You et al., "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility," 2014.
    47. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells," Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, 2014.
    48. H. Zhou et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, no. 6196, pp. 542-546, 2014.
    49. D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature photonics, vol. 8, no. 2, p. 133, 2014.
    50. Z. Xiao et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, no. 8, pp. 2619-2623, 2014.
    51. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature nanotechnology, vol. 9, no. 11, pp. 927-932, 2014.
    52. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, p. 897, 2014.
    53. M. Xiao et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie, vol. 126, no. 37, pp. 10056-10061, 2014.
    54. M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, p. 395, 2013.
    55. M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, "High performance perovskite solar cells by hybrid chemical vapor deposition," Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014.
    56. Y. Peng, G. Jing, and T. Cui, "A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12436-12442, 2015.
    57. X. Li, D. Pletcher, and F. C. Walsh, "Electrodeposited lead dioxide coatings," Chemical Society Reviews, vol. 40, no. 7, pp. 3879-3894, 2011.
    58. H. Chen, Z. Wei, X. Zheng, and S. Yang, "A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells," Nano Energy, vol. 15, pp. 216-226, 2015.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE