簡易檢索 / 詳目顯示

研究生: 張軒華
Chang, Hsuan-Hua
論文名稱: 平面噴流撞擊微小圓柱之渦流結構及擴散特性研究
The Study of Vortical Structures Evolution and Spreading Characteristics of A Plane Jet Impinging Upon a small Cylinder
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 55
中文關鍵詞: 紊流噴流撞擊噴流擴散特性
外文關鍵詞: Turbulence, Jet flow, Impinging Jet, Spreading Characteristics
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以微小圓柱當作人為激擾方式,期望能夠影響平面噴流的流場結構進而增加其擴散與混合特性,實驗噴流出口速度固定為10m/s,此速度相對於噴流出口高度的雷諾數為7.792×10^3,本研究以熱線實驗量測法測量順時速度與平均速度,數據分析後即能觀察平面噴流的渦流結構發展與擴散特性演變,此微小圓柱尺寸為4mm足以完全包含於勢流核當中,與較早期的大件撞擊物體不同,所以預期有不同的結果。撞擊圓柱激擾實驗的實驗變數為不同的撞擊長度:近場區撞擊的撞擊長度= 2H、接近勢流核終點的撞擊長度= 4.5H、以及遠場區撞擊的撞擊長度= 7H。
    由平均速度分析來比較自然噴流與撞擊噴流的不同,可以看出在Xcy= 2H 和 4.5H 的速度提早下降且擾動速度提早上升,表示流場近場區域在圓柱的加入之後會提前結束並且進入噴流與尾流的交互影響區域。
    在擴散特性分析當中本研究以動量厚度、體積流率、剪流層厚度為比較依據,很明顯地如果圓柱位於勢流核內將能夠有效地增加噴流的擴散特性,總和來說,以圓柱激擾的方式必須要將圓柱放置於勢流核當中,也可推論圓柱的導入對噴流近場區的擴散特性有提升效果,而對於噴流遠場區則沒有益處。
    渦流結構與渦流匯聚現象可從頻譜分析當中推測,實驗結果當中的頻譜分析是由快速傅立葉轉換計算而來。自然噴流的頻譜分析中可以看出基本頻率為535Hz,大約在x⁄H=5時半諧頻率(subharmonic frequency=267Hz)的能量超過基本頻率能量,即可推測在x⁄H=5時渦流匯聚。三組不同的撞擊長度實驗皆能發現:共振頻率不同於自然噴流基本頻率535HZ,而轉換為新的共振頻率450Hz,而此共振頻率接近於流過圓柱的尾流頻率,此結果與早期較大圓柱的結果是不同的。

    In this study, the evolution of the coherent structures and the spreading characteristics of a small cylinder impinging plane jet are investigated experimentally by means of hot-wire measurements. Throughout the experiments, the jet exit velocity is fixed at 10 m/sec, and the Reynolds number corresponding to the nozzle width is 7.792×10^3. There are three different impinging length cases: (1) the impinging length of 2H for the near-field impingement, (2) 4.5H for the end-of-potential-core impingement, and (3) 7H for the far-field impingement. The aim of this report is to compare the improvement of those three impingement cases. Mean velocity measurement and FFT(Fast Fourier Transform) spectral analysis are applied to interpret the the dynamics of coherent structures.
    The results indicated that the existence of the cylinder in the jet flow truly changed the jet flow. After comparing the spreading characteristics between three different impinging length condition. The near-field impingement case and the end-of-potential-core impingement case have better improvement to spreading characteristics. Otherwise, the spectral analysis results also proved the feedback mechanism which mentioned by Ho and Nosseir.

    中文摘要 I ABSTRACT III 致謝 V CONTENTS VI LIST OF FIGURES VIII NOMENCLATURE XI CHAPTER I INTRODUCTION 1 1.1 Background 1 1.1.1 The Free Shear Flow 1 1.1.2 Plane Jet and Excited Jets 3 1.2 Motivation and Objectives 4 CHAPTER II EXPERIMENTAL FACILITIES AND DATA PROCESSING 7 2.1 Wind Tunnel and Plane Jet 7 2.2 Impinging Mechanism 8 2.3 Experimental Instrumentations 8 2.3.1 Pressure Transducer 8 2.3.2 Hot-Wire anemometer 9 2.3.3 Traversing Mechanism and the Flow Field Coordinate System 9 2.4 Data Processing 10 2.4.1 Long-time averaging 10 2.4.2 Spreading Characteristics 11 2.4.3 Fast Fourier Transform 12 CHAPTER III RESULTS AND DISCUSSION 17 3.1 Examination of the Natural Jet 17 3.2 Excited Plane Jet 21 3.2.1 Mean Flow Properties 22 3.2.2 Spreading Characteristics 24 3.3 The Intrinsic Evolution of the Instability 26 CHAPTER IV CONCLUSIONS 49 REFERENCES 52

    [1]A. A. Townsend, The structure of turbulent shear flow: Cambridge university press, 1980.
    [2]A. Michalke, "ON THE INVISCID INSTABILITY OF THE HYPERBOLIC-TANGENT VELOCITY PROFILE," Journal of Fluid Mechanics, vol. 19, pp. 543-556, 1964.
    [3]A. Michalke, "ON SPATIALLY GROWING DISTURBANCES IN AN INVISCID SHEAR LAYER," Journal of Fluid Mechanics, vol. 23, pp. 521-&, 1965.
    [4]S. C. Crow and Champagn.Fh, "ORDERLY STRUCTURE IN JET TURBULENCE," Journal of Fluid Mechanics, vol. 48, pp. 547-&, 1971.
    [5]G. L. Brown and A. Roshko, "On density effects and large structure in turbulent mixing layers," Journal of Fluid Mechanics, vol. 64, pp. 775-816, 1974.
    [6]C. Winant and F. Browand, "Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number," Journal of Fluid Mechanics, vol. 63, pp. 237-255, 1974.
    [7]C.-M. Ho and L.-S. Huang, "Subharmonics and vortex merging in mixing layers," Journal of Fluid Mechanics, vol. 119, pp. 443-473, 1982.
    [8]F. O. Thomas, "Structure of Mixing Layers and Jets," Applied Mechanics Reviews, vol. 44, pp. 119-153, 1991.
    [9]E. Gutmark and C. M. Ho, "Preferred modes and the spreading rates of jets," Physics of Fluids (1958-1988), vol. 26, pp. 2932-2938, 1983.
    [10]F.-B. Hsiao and J.-M. Huang, "Near-field flow structures and sideband instabilities of an initially laminar plane jet," Experiments in fluids, vol. 9, pp. 2-12, 1990.
    [11]J.-M. Huang and F.-B. Hsiao, "On the mode development in the developing region of a plane jet," Physics of Fluids (1994-present), vol. 11, pp. 1847-1857, 1999.
    [12]P. G. Drazin and W. H. Reid, Hydrodynamic stability: Cambridge university press, 2004.
    [13]P. G. Drazin, Nonlinear systems vol. 10: Cambridge University Press, 1992.
    [14]A. Hussain and K. Zaman, "The ‘preferred mode’of the axisymmetric jet," Journal of Fluid Mechanics, vol. 110, pp. 39-71, 1981.
    [15]A. Hussain and K. Zaman, "Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics," Journal of Fluid Mechanics, vol. 101, pp. 493-544, 1980.
    [16]C.-M. Ho and P. Huerre, "Perturbed free shear layers," Annual Review of Fluid Mechanics, vol. 16, pp. 365-422, 1984.
    [17]D. Rockwell and E. Naudascher, "Self-sustained oscillations of impinging free shear layers," Annual Review of Fluid Mechanics, vol. 11, pp. 67-94, 1979.
    [18]S. Ziada and D. Rockwell, "Vortex–leading-edge interaction," Journal of Fluid Mechanics, vol. 118, pp. 79-107, 1982.
    [19]R. Kaykayoglu and D. Rockwell, "Unstable jet–edge interaction. Part 1. Instantaneous pressure fields at a single frequency," Journal of Fluid Mechanics, vol. 169, pp. 125-149, 1986.
    [20]C. K. Tam and K. Ahuja, "Theoretical model of discrete tone generation by impinging jets," Journal of Fluid Mechanics, vol. 214, pp. 67-87, 1990.
    [21]Y. Umeda, H. Maeda, and R. Ishii, "Discrete tones generated by the impingement of a high‐speed jet on a circular cylinder," Physics of Fluids (1958-1988), vol. 30, pp. 2380-2388, 1987.
    [22]C. M. Ho and N. S. Nosseir, "DYNAMICS OF AN IMPINGING JET .1. THE FEEDBACK PHENOMENON," Journal of Fluid Mechanics, vol. 105, pp. 119-142, 1981.
    [23]V. Strouhal, "On one particular way of tone generation," Annalen der Physik und Chemie (Leipzig), ser. 3, vol. 5, pp. 216-251, 1878.
    [24]T. Von Karman, "Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1911, pp. 509-517, 1911.
    [25]C. H. Williamson, "Vortex dynamics in the cylinder wake," Annual review of fluid mechanics, vol. 28, pp. 477-539, 1996.
    [26]M. Lucas and D. Rockwell, "Self-excited jet: upstream modulation and multiple frequencies," Journal of Fluid Mechanics, vol. 147, pp. 333-352, 1984.
    [27]F.-B. Hsiao, Y.-W. Chou, and J.-M. Huang, "The study of self-sustained oscillating plane jet flow impinging upon a small cylinder," Experiments in fluids, vol. 27, pp. 392-399, 1999.
    [28]F. B. Hsiao, I. C. Hsu, and J. M. Huang, "Evolution of coherent structures and feedback mechanism of the plane jet impinging on a small cylinder," Journal of Sound and Vibration, vol. 278, pp. 1163-1179, Dec 2004.
    [29]Y.-W. Chou, "The study of self-sustained oscillating planar jet flow impinging upon a small cylinder," Ph. D., National Cheng Kung University, 1998.
    [30]L. Rayleigh, "On the stability, or instability, of certain fluid motions," Proceedings of the London Mathematical Society, vol. 1, pp. 57-72, 1879.
    [31]H. Sato, "The stability and transition of a two-dimensional jet," Journal of Fluid Mechanics, vol. 7, pp. 53-80, 1960.

    無法下載圖示 校內:2017-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE