| 研究生: |
?珈銘 Tu, Chia-Ming |
|---|---|
| 論文名稱: |
具結構色仿生熱致動液晶薄膜的製備及特性研究 Fabrication and Characterization of Thermally Responsive Biomimetic Liquid Crystalline Actuators Showing Structure Colors |
| 指導教授: |
劉俊彥
Liu, Chun-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 結構色 、光子晶體 、軟性機器人 、致動器 |
| 外文關鍵詞: | Structural color, Photonic crystals, Soft robots, Actuators |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,軟性材料在制動器的製造上扮演了至關重要的角色,並展示了其在人造肌肉、軟性機器人和感測器中的應用潛力。在眾多的軟性材料中,由於具備高分子網絡結構和液晶的優選取向,液晶致動器被廣泛使用。本研究中,反平行配相薄膜和仿生熱驅動液晶致動器的製造是透過表面定錨效應和光聚合。透過膽固醇液晶以及配相的結合,仿生致動器預期能夠具備結構色以及形狀變化的能力。薄膜的液晶排列透過POM和SEM鑑定,熱致顏色變化則透過紫外光-可見光光譜儀分析。藉由DSC 和 TGA 分析,致動器(平行-垂直配相)的玻璃轉換溫度和降解溫度約為 50 °C 和 350 °C。在熱刺激下(高於50 °C),致動器透過相變化以及秩序度的降低表現出可逆的彎曲運動和螺旋捲曲。在平行配相的那面,致動器的顏色能夠隨著偏轉角度增加而藍移。最後,為了模擬蝴蝶振翅,仿生致動器透過雷射切割機設計成蝴蝶形狀,並且在熱刺激下,在反覆振動翅膀的同時也能表現出結構色的藍移現象。
Recently, soft materials have played a vital role in fabrication of actuators and demonstrate potential application in artificial muscles, soft robots, and sensors. Among soft materials, liquid crystalline actuators are widely used. In this research, anti-parallel films and thermally driven liquid crystalline actuators were fabricated via surface anchoring and photo polymerization. Cholesteric liquid crystals with anti-parallel arrangement and parallel-perpendicular arrangement were fabricated exhibiting structural color and shape variations. Arrangements of liquid crystals in LC cells were confirmed by POM and SEM. Thermal induced color variations were studied using UV-vis spectrometer. Based on the results of DSC and TGA, glass transition temperature and degradation temperature of liquid crystal polymers with parallel-perpendicular arrangement were estimated as 50 °C and 350 °C, respectively. With thermal stimuli, the fabricated actuators demonstrated a reversible bending motion and helical twisting actuations. Color variations of actuators with parallel arrangement shows a blue shift as changing the viewing angle. To simulate butterfly wing vibration, liquid crystalline actuators with parallel-perpendicular arrangement were cut into the shape of butterfly. With thermal stimuli, butterfly-shaped actuators exhibited reversible wing vibration and a blue shift of structural color simultaneously.
[1] T. Kato, Y. Hirai, S. Nakaso, M. Moriyama,"Liquid-crystalline physical gels," Chem Soc Rev, vol. 36, no. 12, pp. 1857-1867, 2007.
[2] A. Choudhary, T. F. George, G. Li,"Conjugation of Nanomaterials and Nematic Liquid Crystals for Futuristic Applications and Biosensors," Biosensors (Basel), vol. 8, no. 3, 2018.
[3] M. Hussain, E. I. L. Jull, R. J. Mandle, T. Raistrick, P. J. Hine, H. F. Gleeson,"Liquid Crystal Elastomers for Biological Applications," Nanomaterials (Basel), vol. 11, no. 3, 2021.
[4] K. V. Axenov, S. Laschat,"Thermotropic Ionic Liquid Crystals," Materials (Basel), vol. 4, no. 1, pp. 206-259, 2011.
[5] V. P. Shibaev, A. Y. Bobrovsky,"Liquid crystalline polymers: development trends and photocontrollable materials," Russian Chemical Reviews, vol. 86, no. 11, pp. 1024-1072, 2017.
[6] T. Ohzono, K. Katoh, C. Wang, A. Fukazawa, S. Yamaguchi, J. I. Fukuda,"Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal," Sci Rep, vol. 7, no. 1, pp. 16814, 2017.
[7] I. Dierking, S. Al-Zangana,"Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials," Nanomaterials (Basel), vol. 7, no. 10, 2017.
[8] S. Pieraccini, S. Masiero, A. Ferrarini, G. Piero Spada,"Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications," Chem Soc Rev, vol. 40, no. 1, pp. 258-271, 2011.
[9] S. Furumi,"Recent progress in chiral photonic band-gap liquid crystals for laser applications," Chem Rec, vol. 10, no. 6, pp. 394-408, 2010.
[10] D. J. Mulder, A. P. H. J. Schenning, C. W. M. Bastiaansen,"Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors," J. Mater. Chem. C, vol. 2, no. 33, pp. 6695-6705, 2014.
[11] M. E. McConney, M. Rumi, N. P. Godman, U. N. Tohgha, T. J. Bunning,"Photoresponsive Structural Color in Liquid Crystalline Materials," Advanced Optical Materials, vol. 7, no. 16, 2019.
[12] H. Khandelwal, A. P. H. J. Schenning, M. G. Debije,"Infrared Regulating Smart Window Based on Organic Materials," Advanced Energy Materials, vol. 7, no. 14, 2017.
[13] H. Lu, W. Xu, Z. Song, S. Zhang, L. Qiu, X. Wang, G. Zhang, J. Hu, G. Lv,"Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid," Opt Lett, vol. 39, no. 24, pp. 6795-6798, 2014.
[14] J.-i. Hanna, A. Ohno, H. Iino,"Charge carrier transport in liquid crystals," Thin Solid Films, vol. 554, pp. 58-63, 2014.
[15] W.-L. Chia, C.-Y. Tsai,"Synthesis and Mesomorphic Properties of a Series of Phenyl 6-(4-Alkoxyphenyl)nicotinates," Heterocycles, vol. 83, no. 5, 2011.
[16] Y.-H. Lin, Y. Ezhumalai, Y.-L. Yang, C.-T. Liao, H.-F. Hsu, C. Wu,"Influence of Mesogenic Properties of Cruciform-Shaped Liquid Crystals by Incorporating Side-Arms with a Laterally-Substituted-Fluorine," Crystals, vol. 3, no. 2, pp. 339-349, 2013.
[17] M. Salim, H. Minamikawa, A. Sugimura, R. Hashim,"Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics," Med. Chem. Commun., vol. 5, no. 11, pp. 1602-1618, 2014.
[18] L. P. Jones, in Handbook of Visual Display Technology, (Ed: C. W. Chen J., Fihn M.), Springer, Berlin, Heidelberg, 2012, 1387-1402.
[19] C. Cane, K. D. Harris, R. Cuypers, P. Scheibe, G. N. Mol, J. Lub, C. W. M. Bastiaansen, D. J. Broer, J.-C. Chiao, F. Vidal Verdu, in Smart Sensors, Actuators, and MEMS II, 2005, 493-503.
[20] J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S. Y. Wang, F. W. Harris, S. Z. D. Cheng, S. C. Hong, X. W. Zhuang, Y. R. Shen,"Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains," Journal of the American Chemical Society, vol. 123, no. 24, pp. 5768-5776, 2001.
[21] L. Zhang, J. Pan, C. Gong, A. Zhang,"Multidirectional biomimetic deformation of microchannel programmed metal nanowire liquid crystal networks," Journal of Materials Chemistry C, vol. 7, no. 34, pp. 10663-10671, 2019.
[22] X. Che, S. Gong, L. Shao, T. Lan, F. Wang, Y. Wang,"The impact of flexibility of polyimides backbones on the stability of liquid crystal vertical alignment," RSC Advances, vol. 6, no. 60, pp. 55479-55489, 2016.
[23] F. J. Kahn,"Orientation of liquid crystals by surface coupling agents," Applied Physics Letters, vol. 22, no. 8, pp. 386-388, 1973.
[24] F. J. Kahn, G. N. Taylor, H. Schonhorn,"Surfaceface-Produced Alignment of Liquid Crystals," Proceedings of the Ieee, vol. 61, no. 7, pp. 823-828, 1973.
[25] Y. C. Hsiao, Y. C. Sung, M. J. Lee, W. Lee,"Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal," Biomed Opt Express, vol. 6, no. 12, pp. 5033-5038, 2015.
[26] I. C. Khoo, M.-J. Lee, Y.-C. Sung, Y.-C. Hsiao, W. Lee,"Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal," Biomed Opt Express, vol. 6, no. 12, pp. 5033-5038, 2015.
[27] E. P. Plueddemann,"Adhesion Through Silane Coupling Agents," The Journal of Adhesion, vol. 2, no. 3, pp. 184-201, 2008.
[28] O. Yaroshchuk, Y. Reznikov,"Photoalignment of liquid crystals: basics and current trends," J. Mater. Chem., vol. 22, no. 2, pp. 286-300, 2012.
[29] M. O'Neill, S. M. Kelly,"Photoinduced surface alignment for liquid crystal displays," Journal of Physics D-Applied Physics, vol. 33, no. 10, pp. R67-R84, 2000.
[30] T. Seki,"New strategies and implications for the photoalignment of liquid crystalline polymers," Polymer Journal, vol. 46, no. 11, pp. 751-768, 2014.
[31] M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov,"Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 31, no. 7, pp. 2155-2164, 1992.
[32] L. Dong, Y. Zhao,"Photothermally driven liquid crystal polymer actuators," Materials Chemistry Frontiers, vol. 2, no. 11, pp. 1932-1943, 2018.
[33] Z. Wen, K. Yang, J. M. Raquez,"A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials," Molecules, vol. 25, no. 5, 2020.
[34] M. O. Saed, A. Gablier, E. M. Terentejv,"Liquid Crystalline Vitrimers with Full or Partial Boronic‐Ester Bond Exchange," Advanced Functional Materials, vol. 30, no. 3, 2019.
[35] Q. He, Z. Wang, Y. Wang, Z. Song, S. Cai,"Recyclable and Self-Repairable Fluid-Driven Liquid Crystal Elastomer Actuator," ACS Appl Mater Interfaces, vol. 12, no. 31, pp. 35464-35474, 2020.
[36] H. Wang, Y. Yang, M. Zhang, Q. Wang, K. Xia, Z. Yin, Y. Wei, Y. Ji, Y. Zhang,"Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes," ACS Appl Mater Interfaces, vol. 12, no. 12, pp. 14315-14322, 2020.
[37] R. C. P. Verpaalen, M. G. Debije, Cees W. M. Bastiaansen, H. Halilović, T. A. P. Engels, A. P. H. J. Schenning,"Programmable helical twisting in oriented humidity-responsive bilayer films generated by spray-coating of a chiral nematic liquid crystal," Journal of Materials Chemistry A, vol. 6, no. 36, pp. 17724-17729, 2018.
[38] Z. C. Jiang, Y. Y. Xiao, L. Yin, L. Han, Y. Zhao,""Self-Lockable" Liquid Crystalline Diels-Alder Dynamic Network Actuators with Room Temperature Programmability and Solution Reprocessability," Angew Chem Int Ed Engl, vol. 59, no. 12, pp. 4925-4931, 2020.
[39] Z. Li, X. Zhang, S. Wang, Y. Yang, B. Qin, K. Wang, T. Xie, Y. Wei, Y. Ji,"Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization," Chem Sci, vol. 7, no. 7, pp. 4741-4747, 2016.
[40] J. Teyssier, S. V. Saenko, D. van der Marel, M. C. Milinkovitch,"Photonic crystals cause active colour change in chameleons," Nat Commun, vol. 6, pp. 6368, 2015.
[41] R. O. Prum, R. Torres, C. Kovach, S. Williamson, S. M. Goodman,"Coherent light scattering by nanostructured collagen arrays in the caruncles of the Malagasy asities (Eurylaimidae : Aves)," Journal of Experimental Biology, vol. 202, no. 24, pp. 3507-3522, 1999.
[42] C. A. Tippets, Y. Fu, A.-M. Jackson, E. U. Donev, R. Lopez,"Reproduction and optical analysis of Morpho-inspired polymeric nanostructures," Journal of Optics, vol. 18, no. 6, 2016.
[43] S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, U. Steiner,"Pointillist structural color in Pollia fruit," Proc Natl Acad Sci U S A, vol. 109, no. 39, pp. 15712-15715, 2012.
[44] J. Sun, B. Bhushan, J. Tong,"Structural coloration in nature," RSC Advances, vol. 3, no. 35, 2013.