| 研究生: |
謝良瓛 Hsieh, Liang-Huan |
|---|---|
| 論文名稱: |
氣化合成氣新式觸媒篩網駐焰燃燒室應用於微型氣渦輪引擎之研究 Design of a novel Catalytic Mesh-Stabilized Combustor for Miniature Gas Turbine burning Syngas |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氣化合成氣 、觸媒燃燒 、篩網駐焰 、微型氣渦輪引擎 |
| 外文關鍵詞: | Catalytic Combustion, Screen Mesh, Flame Stabilization, Miniature Gas Turbine, Syn-Gas |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對近期來備受重視的生質能源與低熱值燃料–氣化合成氣於微型氣渦輪引擎的應用所引起的問題,吾人特別提出氣化合成氣觸媒篩網駐焰燃燒室的概念,利用觸媒燃燒可解決燃燒室尺寸限制造成渦輪葉片熱點產生的問題,不需於燃燒後再混入冷空氣,簡化燃燒室設計,並且運用在氣化合成氣貧油燃燒更低的燃氣比,擴張燃料可燃極限與增加燃燒穩定性進行穩駐燃燒。吾人首先利用蜂巢式觸媒測試發現有出口溫度過低與觸媒容易因高於操作溫度而受損,使蜂巢式觸媒在實際燃燒室操作上有困難。
為了保護觸媒段,本實驗使用觸媒網轉化小部分燃料產生反應熱,使燃料在氣相反應區達到點燃溫度範圍內穩駐燃燒,使觸媒溫度不因高溫損毀。但燃燒室內流體速度較快,導致氣相反應區停滯時間不夠而不易穩駐火焰,所以在觸媒段下游擺置篩網擾動流體,使流體在此區產生渦流,增加局部停滯時間使氣相反應穩駐燃燒而達到理想出口溫度。吾人先找出適用於氣渦輪引擎觸媒燃燒室的燃料成份比例,發現隨著燃料中H2比例的增加,不僅壁面溫度會增加同時也會幫助下游氣相反應區穩駐。
進一步研究固定燃料體積比,流體速度改變下游篩網駐焰器之特性,並量測觸媒壁面溫度、出口溫度與氣體分析結果,發現隨著速度加快,篩網網格數增加、篩網與觸媒網距離增長、篩網數增加,能將氣相反應區火焰完全穩駐燃燒,並找出本實驗適用於微型氣渦輪引擎之操作區間圖,證實觸媒篩網駐焰燃燒室應用於微型氣渦輪引擎之可行性。
In view of the increasing intensive attention of the biomass energy and low heating value fuels as applied in miniature gas turbines for electricity generation, in this thesis we propose a novel concept of catalytic mesh and screen mesh for use in the miniature gas turbine combustors to stabilize the low-BTU syngas combustion. Catalyst provides the outstanding features of stable reactions for low-BTU, low temperature and ultra lean fuels, which are suitable for conditions of gas turbine combustion burning syngases. In initial tests with honeycomb catalysts, we found that in the operation the honeycomb catalyst tends to be over-heated on the catalyst surface and causing sintering on the catalyst bed structure. In addition, the output temperature tends to be too low to sustain the gas phase reaction downstream. Therefore, honeycomb catalysts will be suitable for smaller operation range and should be operated with more precise operation conditions.
The novel concept for catalytic combustion of low-BTU syn-gas in a gas turbine combustor is to first catalytically convert a portion of the fuel, mainly highly active hydrogen, to raise the temperature of the fuel-air mixture stream so that gas phase reaction of the high speed mixture leaving the catalyst bed can be stabilized downstream or by mesh flame holder. The outstanding feature of this concept is to avoid causing over-heating and sintering of the catalyst bed as well as to sustain and stabilize a low-temperature flame downstream to have complete combustion of the low-BTU syn-gas.
The combustion and stabilization characteristics of screen mesh flame holders in different mixture velocities and different components of fuels are investigated by measurinf the catalyst temperature, exiting temperature, and exhaust gas analysis. Gas phase reaction will be enhanced by screen mesh flame holder when increasing mesh per inch, distance from catalytic mesh, and number of the screen meshes in higher velocity. The feasibility and the operational characteristics of the catalytic mesh-stabilized combustor for miniature gas turbine burning syngas are investigated and proven in this study.
Carroni, R., Schmidt, V., and Griffin, T., 2002, “Catalytic combustion for power generation,” Catalyst Today, vol. 75,pp.287-295.
Chao, Y.C., Chen, G.B., and Hsu, J.R., 2004, “Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor,” Catalysis Today, vol.83, pp.257-264.
Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., and Dibble, R. W., 2000, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum.” Catalysis Today, vol. 59, pp 141-150.
Etemad, S., Karim H., Smith, L.L., and Pfefferle, W.C., 1999, “Advanced technology catalytic combustor for high temperature ground power gas turbine applications,” Catalysis Today, vol. 47, pp.305-313.
Forsth, M., Gudmundson, F., Persson J.L., and Rosen A., 1999, “The Influence of a Catalytic Surface on the Gas-phase Combustion,” Combustion and Flame, vol.119, pp.144-153.
Hasan, K., Lyle, K., Lance, S. L., Etemad, S.h, Dutta P., Smith K., and Pfefferle, W.C., 2003, “Advanced Catalytic Pilot for Low NOX Industrial Gas Turbines” Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 879-884.
Johansson, E.M., Magnus, B., Johan K., Sven, G.J., 1999, “Catalytic combustion of gasified biomass : poisoning by sulphur in the feed,” Applied Catalysis B:Environmental, vol.20, pp.319-332.
Johansson, E.M., Danielsson J.K.M., Pocoroba, E., Haralson, E.D., and Jaras, S.G., 1999 , “Catalytic combustion of gasified Biomass over hexaaluminate catalysts : influence of palladium loading and ageing,” Applied Catalysis A: General , vol. 182, pp.199-208.
Lance L. S., Karim, H., Marco J., Etemad, C.S., and Pfefferle, W.C., 2005, “Rich-Catalytic Lean-Burn Combustion for Low-Single-Digit NOx Gas Turbines,” Journal of Engineering for Gas Turbines and Power, vol. 127, pp27-35.
Lance, L.S., Karim H., Marco, J., Etemad, C.S., and Pfefferle, W.C., 2006,“Rich-Catalytic Lean-burn combustion for fuel-flexible operation with ultra low emissions” Catalysis Today, vol. 117, pp. 438-446.
Laster, W.R., 2005, “Development of a Catalytic Combustion for Fuel Flexible Turbines,” Presented at the 2005 Pittsburgh Coal Conference.
Longwell, J.P., Chenevey, J.E., Clark, W.W., and Frost, E.E., 1949, “Flame Stabilization by Baffles in A High Velocity Gas Stream,” 3rd Symposium on Combustion and Flame and Explosion Phenomena,” pp. 40-44.
Longwell, J.P., 1952, “Flame Stabilization by Baffles and Turbulent Flames in Ducts,” 4th International Symposium on Combustion,” pp. 90-97.
Marcus, F.M.Z., Heginuz, G.M.E., Gregertsen, B.H., Sjostorm K., and Jaras, S.G., 1997, “Catalyst combustion of gasified biomass over Pt/Al2O3,” Applied Catalyst A: General, vol.148, pp.325-341.
Masao, T., Junjo, K., 1997, “Experimental analysis of C3H8 catalyst combustion in a honeycomb monolith Pt catalyst,” The First Asia-Pacific Conference on combustion, pp.555-558
Michael, L.Q., and Kamitomai, S., 1995, “Catalytic combustion reactor design and test results,” Catalysis Today, vol. 26, pp303-308.
Pfefferle, W.C., and Pfefferle, L.D., 1986, “Catalytically Stabilized Combustion,” Progress in Energy and Combustion Science,” vol. 12, pp. 25-41.
Pfefferle, W.C., 1997, United States Patent, NO. 5,452,574.
Rinnemo, M., Kulginov, D., Johansson, S., Wong, K.L., and Zhdanov, V.P., 1997, “Catalytic ignition in the CO-O2 reaction on platinum : experiment and simulations,” Surface science, vol. 376, pp. 297-309.
Seo, Y.S., Cho, S.J., Kang, S.K., and Shin, H.D., 2000, “Numerical studies of catalytic combustion in a catalytically stabilized combustor,” International Journal of Energy Research,” pp. 1049-1064.
Smooke, M. D., 1991, Reduced Kinetic “Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics,” vol. 384, Springer-Verlag, pp. 1-28.
Sorab, R.V., 1997, “Low-Emission Gas Turbine Using Catalytic Combustion, ” Energy Convers. Mgmt. , vol. 38, pp.1327-1334.
Stwalley, R.M., and Lefebvre, A.H., 1987, “Flame Stabilization Using Large Flameholders of Irregular Shape,” AIAA, 87-0469.
Tham. Y.F., and Chen. J. Y., 2006, “Numerical study of Rich Catalytic combustion of Syngas as a First stage in a Rich-Quick-Lean (RQL) Turbine System,” CST, 06-04-03.
William, G.C., Hottle, H.C, and Scurlock, A.C., 1949, “Flame Stabilization and Propagation in High Velocity Gas Stream,” 3rd Symposium on Combustion and Flame and Explosion Phenomena,” pp. 21-40.
Yasushi, O., Tomoharu, F., Mikio, S., Takaaki, K., and Hitoshi, I., 1999, “Development of a catalytically assisted combustor for a gas turbine,” Catalysis Today, vol. 47, pp. 399-405.
何基再,2007,“氣化合成氣旁通式觸媒駐焰燃燒室於微型氣渦輪引擎之研發”,國立成功大學航空太空工程研究所碩士論文。
許紘瑋,1998,“觸媒穩駐燃燒之初步研究”,國立成功大學航空太空工程研究所碩士論文。
陳冠良,2005,“重質油氣化合成氣觸媒氣渦輪引擎之研發”,國立成功大學航空太空工程研究所碩士論文。
張仲翔,2005,“高壓觸媒燃燒之研究”,國立成功大學航空太空工程研究所碩士論文。
謝維昇,2003,“觸媒氣渦輪引擎原形之發展”,國立成功大學航空太空工程研究所碩士論文。