簡易檢索 / 詳目顯示

研究生: 林建廷
Lin, Chien-Ting
論文名稱: 以局部氣候分區整合風環境與熱環境之都市氣候地圖研究─以台南市為例
Urban climate map: integration of urban wind environment and thermal environment based on local climate zone classification—a case study in Tainan
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 69
中文關鍵詞: 熱負荷都市氣候地圖局部氣候分區都市風環境都市型態
外文關鍵詞: thermal load, urban climatic map, local climate zone, urban wind environment, urban typology
相關次數: 點閱:189下載:46
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 回顧國內相關熱島現象研究,多以尺度較大的土地使用分區和較難完整表述人體熱感知的空氣溫度作為資訊基礎及研究指標進而分析提出論述,因此難以說明不同都市建成環境的微氣候之於人體熱舒適的關聯性。本研究以德國於1970年代開始使用的都市氣候地圖概念為基礎並進行改進,並以台灣台南都會區做為對象進行研究。「都市氣候地圖」是一種整合氣候、都市環境、熱環境、風環境等重要資訊,以網格為基礎,標示都市氣候現象及現存問題的地圖呈現方法。本研究透過ArcGIS工具操作,以長寬50公尺網格格目之「都市氣候地圖」結合現地氣候實測、數值模擬的方式,並以所能代表人體溫度感之溫度指標「生理等效溫度」(Physiological Equivalent Temperature)做為衡量標準,建立一套台灣都市熱環境及風環境氣候圖之標準方法,並透過「都市氣候分析圖」呈現都市中之「熱環境」、「風環境」訊息。此外本研究也以近年熱島研究中對全球城鄉環境類型進行分類的新標準-局部氣候分區(Local Climate Zone)做為研究範圍內的環境分類基礎,取代過去所使用的土地使用分區,重新定義因應氣候環境之都市型態分類,並進行分析歸納研究範圍內各局部氣候分區之生理等效溫度,以利後續在規劃設計上,予以適當局部氣候分區建成型態之建議。
    研究結果顯示,不透水率及建築迎風立面係數兩項都市發展因子,影響溫度較其他因子顯著。在熱環境方面,都市中新建成區普遍多呈現強烈熱壓力,部分甚至呈現極端熱壓力如密集商業區與住宅區;學校及公園等開闊且綠化面積較高之土地,在都市中往往多呈現舒適熱壓力之情況。風環境方面,相對通風潛力高的地區多位於順應風向之主要道路的位置,或多位於開闊之場域。而透過與局部氣候分區套疊之歸納結果,顯示未來開發應盡量避免LCZ2 (密集中樓層數建成區)及LCZ3(密集低樓層數建成區)之局部氣候分區型態以避免增加環境熱壓力,在建築覆蓋的密集度與建築樓層數高度的取捨上,本研究亦建議以考量建築密集度為優先考量,較低密集度的建成區型態,有助於緩解都市熱壓力議題。若未來需進行開發,則盡可能採LCZ6 (開放式低樓層數建成區)或LCZ9 (散佈式建成區)之局部氣候分區型態進行。此外,在景觀設計的建議,LCZD (高覆蓋式灌木)及LCZG (水體)也是有助於都市降溫之地景設計型態。
    藉由都市氣候地圖集的建立結合局部氣候分區之分析,可提供不同尺度之設計規劃者快速取得相關氣候資訊與建成型態之建議並納入設計規劃當中;同時考量台灣法規管制之可行性,於未來可建構「都市氣候規劃建議圖」,以達到氣候對於都市規劃應用之實質意義,進而提升都市對於氣候之調適性。

    Motivated by the increasing temperature in urban environments, this work establish Urban Climatic map (UCmap) focusing on thermal environment issues based on urban development factors, e.g, land cover and building characteristics, representing thermal load of human body, ventilation in the street blocks. In the established process of UCmap in this work, Tainan city, which is a highly developed city in southern Taiwan, is selected as the research area. A 50m-resolution grid is used to capture urban development factors and the climate data based one year of mobile and fix-point measurements, from which the thermal load and the wind environment map are constructed. This work also applies the Local Climate Zone (LCZ) classification method, which has been widely used in research into urban heat islands and microclimates in recent years, to elucidate the relationship between the urban climate and urban topography. The results herein reveal that a higher urban development level is associated with a higher thermal load, and similar areas are more likely than others to suffer from an extreme thermal load and low wind pass conditions. The conclusions herein suggest that, open and sparse low-rise buildings constitute the most appropriate LCZ for urban built environment in Tainan. Using the UCmap combined with LCZ, the government, urban planners and architects without a meteorological background can efficiently obtain climate information and easily identify hot spots, to make regulations to mitigate the growing problem of thermal stress.

    第一章、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的 3 第三節、 研究內容 4 第四節、 研究流程 5 第二章、 文獻回顧 7 第一節、 都市氣候 7 第二節、 都市氣候地圖定義 7 第三節、 熱環境相關理論概述 8 第四節、 風環境相關理論概述 11 第五節、 局部氣候分區定義 12 第六節、 國外相關研究 13 第三章、 研究方法與材料 15 第一節、 研究範圍 15 第二節、 研究架構 18 第三節、 圖層製作 19 第四節、 影響都市氣候相關因子圖層 21 第五節、 氣象實測及資料整合方法 26 第六節、 氣候模擬軟體 30 第七節、 熱環境預估方法 31 第八節、 最小路徑法 31 第九節、 局部氣候分區方法 36 第四章、 研究結果 39 第一節、 熱環境指標預測式建立 39 第二節、 都市熱負荷地圖 45 第三節、 都市風環境模擬地圖 50 第四節、 氣候整合分析地圖 55 第五節、 局部氣候分區地圖與相關分析 57 第五章、 結論與建議 61 第一節、 討論 61 第二節、 研究結論 64 第三節、 後續研究建議 65

    1. Arnold Jr, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American planning Association, 62(2), 243-258.
    2. Ashie, Y., & Kono, T. (2011). Urban‐scale CFD analysis in support of a climate‐sensitive design for the Tokyo Bay area. International Journal of Climatology, 31(2), 174-188.
    3. Escourrou, G. (1991). Climate and pollution in Paris. Energy and Buildings, 16(1-2), 673-676.
    4. Fanger, P. (1967). Calculation of thermal comfort, Introduction of a basic comfort equation. ASHRAE transactions, 73(2), III. 4.1-III. 4.20.
    5. Grimmond, C., & Oke, T. R. (1999). Aerodynamic properties of urban areas derived from analysis of surface form. Journal of Applied Meteorology, 38(9), 1262-1292.
    6. Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75.
    7. Hwang, R.-L., & Lin, T.-P. (2007). Thermal comfort requirements for occupants of semi-outdoor and outdoor environments in hot-humid regions. Architectural Science Review, 50(4), 357-364.
    8. John, W., & David, H. (2000). Measuring Vegetation (NDVI & EVI): NASA Earth Observatory.
    9. Jusuf, S. K., Wong, N., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat International, 31(2), 232-242.
    10. Kaufmann, R., Zhou, L., Myneni, R., Tucker, C., Slayback, D., Shabanov, N., & Pinzon, J. (2003). The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophysical Research Letters, 30(22).
    11. Landsberg, H. E. (1981). The urban climate (Vol. 28): Academic press.
    12. Lin, T.-P., Yang, S.-R., & Matzarakis, A. (2015). Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception. International Journal of Biometeorology, 59(12), 1825-1837.
    13. Manley, G. (1958). The revival of climatic determinism. Geographical Review, 48(1), 98-105.
    14. Matzarakis, A., & Endler, C. (2010). Adaptation of thermal bioclimate under climate change conditions—the example of physiologically equivalent temperature in Freiburg, Germany. Int J Biometeorol, 54, 479-483.
    15. Matzarakis, A., & Mayer, H. (1992). Mapping of urban air paths for planning in Munich. Wiss. Ber. Inst. Meteor. Klimaforsch. Univ. Karlsruhe, 16, 13-22.
    16. Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84.
    17. Matzarakis, A., Rockle, R., Richter, C., Hofl, H., Steinicke, W., Streifeneder, M., & Mayer, H. (2008). Planungsrelevante Bewertung des Stadtklimas--Am Beispiel von Freiburg im Breisgau. Gefahrstoffe-Reinhaltung der Luft, 68(7), 334.
    18. Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38(1), 43-49.
    19. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
    20. Ren, C., Lau, K. L., Yiu, K. P., & Ng, E. (2013). The application of urban climatic mapping to the urban planning of high-density cities: The case of Kaohsiung, Taiwan. Cities, 31, 1-16.
    21. Ren, C., Ng, E. Y. y., & Katzschner, L. (2011). Urban climatic map studies: a review. International Journal of Climatology, 31(15), 2213-2233.
    22. Ren, C., Spit, T., Lenzholzer, S., Yim, H. L. S., Heusinkveld, B., van Hove, B., . . . Katzschner, L. (2012). Urban climate map system for Dutch spatial planning. International journal of applied earth observation and geoinformation, 18, 207-221.
    23. Schueler, T. R. (1994). The importance of imperviousness. Watershed protection techniques, 1(3), 100-111.
    24. Smith, C., Lindley, S., & Levermore, G. (2009). Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: the case of Manchester. Theoretical and Applied Climatology, 98(1-2), 19-35.
    25. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.
    26. Sun, D., & Kafatos, M. (2007). Note on the NDVI‐LST relationship and the use of temperature‐related drought indices over North America. Geophysical Research Letters, 34(24).
    27. Takahashi, K., Yoshida, H., Tanaka, Y., Aotake, N., & Wang, F. (2004). Measurement of thermal environment in Kyoto city and its prediction by CFD simulation. Energy and Buildings, 36(8), 771-779.
    28. VDI, V. (1998). 3787, Part I: Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level. Part I: Climate. Part I: Climate.
    29. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of environment, 89(4), 467-483.
    30. Wong, M. S., Nichol, J., & Ng, E. (2011). A study of the “wall effect” caused by proliferation of high-rise buildings using GIS techniques. Landscape and Urban Planning, 102(4), 245-253.
    31. Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.

    1. 吉野正敏(1976)。小氣候。日本:大明堂株式會社
    2. 林子平、何友鋒、楊鴻銘(2005)。都市地表不透水率之預估與分析─以台中市為例。都市與計劃,32(3),333-353
    3. 朱桂仁(2006)。風工程概論。台北:科技圖書出版中心
    4. 林憲德(2009)。人居熱環境。台北:詹氏書局
    5. 鄭子傑(2011) 。以形態學方法探討都市風廊道與潛力降溫改善策略─臺南市安平與周邊區域為例。國立成功大學都市計劃研究所
    6. 任超、吳恩融(2011)。城市環境氣候圖─可持續城市規劃輔助信息系統工具。中國:中國建築工業出版社
    7. 香港中文大學建築學院(2012)。規劃署─都市氣候圖及風環境評估標準可行性研究,31-49

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE