| 研究生: |
趙冠舜 Chao, Kuan-Shun |
|---|---|
| 論文名稱: |
以Linux-RTAI為基礎之雙足機器人機電整合設計與實現 Mechatronic Design and Realization of a Linux-RTAI-Based Biped Robot |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 雙足機器人 、Denavit-Hartenberg表示法 、逆向運動學 |
| 外文關鍵詞: | biped robot, Denavit-Hartenberg, inverse kinematics |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在設計與實現雙足機器人系統。數學模型上,利用Denavit-Hartenberg表示法定義雙足機器人各關節軸的座標系,並使用逆向運動學以計算各關節軸之運動角度。機構設計上,利用電腦輔助設計工程繪圖軟體,設計雙足機器人整體機構。以真人雙腳作為設計範本,完成雙足機器人腰部以下之機電設計與整合。控制系統上,以PC/104+與RTAI-Linux作業系統作為控制核心平台,透過PCI轉CAN通訊介面和數位訊號處理器TMS320F2812,以數位訊號處理器之單板獨立的技術,搭配馬達驅動電路、光學編碼器與PID控制器,進而完成雙足機器人控制系統之建構。經由實驗驗證雙足機器人之行走姿態規劃及控制。
The aim of this thesis is to design and implement a biped robot system. In system modeling, the Denavit-Hartenberg representation is used to define the coordinate systems of joints, and inverse kinematics is utilized to calculate the angular displacement of each joint. The computer-aided design software is used to design the mechanical structure of the robot. The entire design concept of the robot is based on the humanoid lower body. In the control system, the control kernel platform is based on a PC/104+ and RTAI-Linux operation system. A PCI to CAN bus communication interface is developed to connect PC/104+ and motor controllers. The motor controller is based on a digital signal processor (TMS320F2812), which is set up to operate in the standalone mode. The PID control scheme is used to carry out the motor control. The PWM motor driver is used to drive the dc motor of the joint. Angular displacement of the joint is measured by an optical encoder. The thesis verifies the performance of the developed biped robot system through experimental studies.
[1] Harmonic Driver, http://www.harmonicdrive.net/
[2] TMS320F281X Digital Signal Processors Data Manual, Texas Instruments Inc., 2001.
[3] Robotic Portal, http://mindtrans.narod.ru/
[4] Waseda robot, http://www.humanoid.waseda.ac.jp/booklet/kato_2.html
[5] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.O. Lim, and A. Takanishi, “Development of a New Humanoid Robot WABIAN-2,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 76-81, 2006.
[6] ASIMO robot, http://world.honda.com/ASIMO/
[7] S. Nakaoka, F. Kanehiro, K. Miura, M. Morisawa, K. Fujiwara, K. Kaneko, S. Kajita, and H. Hirukawa, “Creating Facial Motions of Cybernetic Human HRP-4C,” Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots, pp. 561-567, 2009.
[8] I.W. Park, J.Y. Kim, J. Lee, and J.H. Oh, “Mechanical Design of Humanoid Robot Platform KHR-3,” Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, pp. 321-326, 2005.
[9] MAHRU robot, http://humanoid.kist.re.kr/eng/mahruahra/info_01.php
[10] DLR-Biped, http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-6838/11291_read-25964/
[11] LOLA robot, http://www.amm.mw.tum.de/1/news/aktuelle-projekte/humanoid-robots/lola/
[12] AAU-BOT robot, http://www.aaubot.aau.dk/index.php
[13] Yobotics-IHMC Biped robot, http://robot.ihmc.us/Robotics/Multimedia/IHMC_Photos/Pages/Yobotics-IHMC_Biped
[14] 王紹帆,「雙足機器人的設計與實現」,國立台灣大學工學院機械工程學系碩士論文,民國九十九年。
[15] 盧兆慶,「雙足機器人之步態規劃與感測系統建置」,國立台灣大學工學院機械工程學系碩士論文,民國九十九年。
[16] 趙毓文,「雙足機器人之機電整合與腳步協調規劃與控制」,國立台灣大學工學院機械工程學研究所碩士論文,民國九十九年。
[17] 李佳益,「Linux多執行緒即時控制系統之實現」,國立成功大學工程科學系碩士論文,民國九十七年。
[18] 陳震豪,「利用PC/104+與Linux-RTAI之即時多工控制系統的實現」,國立成功大學工程科學系碩士論文,民國九十八年。
[19] 許志源,「在PC/104+與CAN BUS架構下實現以Linux-RTAI為基礎之分散式即時監控系統」,國立成功大學工程科學系碩士論文,民國九十九年。
[20] 簡誌佑,「以Linux-RTAI為基礎之機器人足部設計與實現」,國立成功大學工程科學系碩士論文,民國一○○年。
[21] I.W. Park, J.Y. Kim, and J.H. Oh, “Online Biped Walking Pattern Generation for Humanoid Robot KHR-3,” Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots, pp. 398-403, 2006.
[22] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, “Design of Prototype Humanoid Robotics Platform for HRP,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2431-2436, 2002.
[23] I.W. Park, J.Y. Kim, J. Lee, M.S. Kim, B.K.Cho, and J.H. Oh, Humanoid Robots, Human-like Machines, 2007.
[24] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelligence. McGraw, 1987.
[25] John J. Craig, Introduction to Robotics Mechanics and Control, Third ed., Pearson International Edition.
[26] G. Tevatia and S. Schaal, “Inverse Kinematics for Humanoid Robots,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 294-299, 2000.
[27] D.L. Pieper, “The kinematics of manipulators under computer control,” Ph.D. dissertation, Stanford Univ., 1968.
[28] Muhammad A. Ali, H. Andy Park, and C.S. George Lee, “Closed-Form Inverse Kinematic Joint Solution for Humanoid Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 704-709, 2010.
[29] PC/104 Embedded Consortium, http://www.pc104.org/
[30] PCM-3380 User Manual 2nd ed., Advantech, 2006.
[31] RTAI website, https://www.rtai.org/
[32] SN65HVD232 3.3-V CAN Transceivers Datasheet, Texas Instruments Inc., 2001-2006.
[33] SJA1000 Stand-Alone CAN Controller Datasheet, Philips Inc., 2000.
[34] A3941 Automotive Full Bridge MOSFET Driver, Allegro Inc., 2008.