| 研究生: |
黃怡文 Huang, Yi-Wen |
|---|---|
| 論文名稱: |
以無電鍍法研製砷化鋁鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率電晶體 Fabrication of AlGaAs/InGaAs/GaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) with Electroless Plated Technology |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 擬晶性高電子移動率電晶體 、無電鍍 |
| 外文關鍵詞: | phemt, electroless plating |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們以有機金屬化學氣相沉積法成長及研製砷化鋁鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率電晶體。由於物理真空鍍膜技術對元件造成的熱傷害,使得費米能階幾乎釘在某一定值,而不隨著不同金屬功函數變動,同時造成蕭特基能障高度也相對較低。
為了改善費米能階釘住效應對元件的影響,我們於本論文中使用無電鍍法沉積金屬閘極,以獲得良好的蕭特基接面。因為蕭特基接面的品質對元件特性之影響相當直接,蕭特基能障高度的增加,會使得空乏區增大,並提高夾止特性及崩潰電壓值。
此外,我們比較無電鍍與傳統熱蒸鍍之元件特性,包含直流、微波和可靠度表現。在室溫下,無電鍍元件展現良好的直流特性,但隨著溫度由300K升至500K時,其退化率相對嚴重,因此熱蒸鍍元件在微波與可靠度的表現上,仍然是比較佔有優勢。
In this thesis, AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs) grown by metal organic chemical vapor deposition (MOCVD) have been fabricated and investigated. Due to the thermal damage of physical vacuum depositions, Fermi-level is almost pinned at constant value instead of different metal work function. This results in a lower Schottky barrier height of the studied devices.
In order to eliminate Fermi-level pinning effect, electroless plated technology is employed to deposit metal gate to obtain well-behaved Schottky contact interface. Since the quality of Schottky contact interface directly affects the device performance, the increase of Schottky barrier height can enhance the channel’s depletion region as well as the pinch-off and breakdown characteristics.
Furthermore, the characteristics of the devices with electroless plating and conventional thermal evaporation, including DC performance, microwave performance, and reliability issues are systematical compared. At room temperature, the device with electroless plating shows better DC performance but worse temperature degradation rate with temperature increasing from 300K to 500K. In addition, the device with thermal evaporation still exhibits superior microwave and reliability performance.
[1] P. M. Asbeck, D. L. Miller, W. C. Petersen and C. G. Kirkpatrick, “GaAs/GaAlAs heterojunction bipolar transistors with cutoff frequencies above 10 GHz,” IEEE Electron Device Lett., Vol. 3, pp. 366-368, 1982.
[2] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a GaInP emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., Vol. 6, pp. 175-177, 1985.
[3] W. V. McLevige, H. T. Yuan, W. M. Duncan, W. R. Frensley, F. H. Doerbeck, H. Morkoc and, T. J. Drummond, “GaAs/AlGaAs heterojunction bipolar transistors for integrated circuit applications,” IEEE Electron Device Lett., Vol. 3, pp. 43-45, 1982.
[4] M. Inada, Y. Ota, A. Nakagawa, M. Yanagihara, T. Hirose and K. Eda, “AlGaAs/GaAs heterojunction bipolar transistors with small size fabricated by a multiple self-alignment process using one mask,” IEEE Trans. Electron Devices, Vol. 34, pp. 2405-2411, 1987.
[5] M. Kurata and J. Yoshida, “Modeling and characterization for high-speed GaAlAs-GaAs n-p-n heterojunction bipolar transistors,” IEEE Trans. Electron Devices, Vol. 31, pp. 467-473, 1984.
[6] N. Pan, J. Elliott, M. Knowles, D. P. Vu, K. Kishimoto, J. K. Twynam, H. Sato, M. T. Fresina and G. E. Stillman, “High reliability InGaP/GaAs HBT,” IEEE Electron Device Lett., Vol. 19, pp. 115-117, 1998.
[7] S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan and W. C. Liu, “A new InGaP GaAs double delta-doped heterojunction bipolar transistor ((DHBT)-H-3),” Thin Solid Films, Vol. 345, pp. 270-272, 1999.
[8] McCarthy LS, Kozodoy P, Rodwell MJW, DenBaars SP and Mishra UK, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 20, pp. 277-279, 1999.
[9] W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., Vol. 20, pp. 510-513, 1999.
[10] P. C. Chang, A. G. Baca, N. Y. Li, P. R. Sharps, H. Q. Hou, J. R. Laroche and Ren, “InGaAsN/AlGaAs P-n-p heterojunction bipolar transistor,” Appl. Phys. Lett., Vol. 76, pp. 2788-2790, 2000.
[11] H. J. Pan, S. C. Feng, W. C. Wang, K. W. Lin, K. H. Yu, C. Z. Wu, L. W. Laih and W. C. Liu, “Investigation of an InGaP/GaAs resonant-tunneling heterojunction bipolar transistor,” Solid-State Electron., Vol. 45, pp. 489-494, 2001.
[12] W. S. Lour, W. C. Liu, J. H. Tsai and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., Vol. 67, pp. 2636-2638, 1995.
[13] W. S. Lour, J. H. Tsai, L. W. Laih and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, Vol. 43, pp. 871-876, 1996.
[14] W. S. Lour, W. L. Chang, S. T. Young and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/(p+)-InGaP/n-GaAs heterojunction camel-gate FET,” Electron. Lett., Vol. 34, pp. 814-815, 1998.
[15] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour and W. C. Liu, “On the n+-GaAs/(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., Vol. 14, pp. 307-311, 1999.
[16] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations,” IEEE Trans. Electron Devices, Vol. 48, pp. 1522-1530, 2001.
[17] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng and K. B. Thei, “ Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, Vol. 48, pp. 2677-2683, 2001.
[18] K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., Vol. 40, pp. 24-27, 2001.
[19] H. M. Chuang, S. Y. Cheng, X. D. Liao, C. Y. Chen and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” Electron. Lett., Vol. 39, pp. 1016-1018, 2003.
[20] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, Vol. 50, pp. 1717-1723, 2003.
[21] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen and W. C. Liu, “Comparative Study on DC Characteristics of In0.49Ga0.51P-Channel Heterostructure Field-Effect Transistors with Different Gate Metals,” Semicond. Sci. Technol., Vol. 18, pp. 319-324, 2003.
[22] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao and W. C. Liu, “Study of InGaP/InGaAs Double Delta-Doped Channel Heterostructure Field-Effect Transistors (DDDCHFETs),” J. Vac. Sci. & Technol. B, Vol. 22, pp. 832-837, 2004.
[23] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu and W. C. Liu, “Study of InGaP/InGaAs Double Doped Channel Heterostructure Field-effect Transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
[24] K. B. Chough, B. W. P. Hong, C. Caneau, J. I. Song, K. I. Jeon, S. C. Hong and K. Lee, “Graded pseudomorphic channel AlInP/AlInAs/GaInAs HEMTs with high channel breakdown voltage,” Electron. Lett., Vol. 30, pp. 453-454, 1994.
[25] E. A. Moon, J. L. Lee and H. M. Yoo, “Selective wet etching of GaAs on AlxGa1-xAs for AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor,” J. App. Phys., Vol. 84, pp. 3933-3938,1998.
[26] P. Fay, K. Stevens, J. Elliot and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs PHEMT's,” IEEE Electron Device Lett., Vol. 21, pp. 141-143, 2000.
[27] K. H. Yu, H. Mi. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, Vol. 49, pp. 1687-1693, 2002.
[28] R. Khatri and K. Radhakrishnan, “Study of highly selective, wet gate recess process for Al0.25Ga0.75As/GaAs based pseudomorphic high electron mobility transistors,” J. Vac. Sci. & Technol. B, Vol. 24, pp. 1653-1657, 2004.
[29] C. Gaquiere, J. Grunenputt, D. Jambon, E. Delos, D. Ducatteau, M. Werquin, D. Theron and P. Fellon, “A high-power W-band pseudomorphic InGaAs channel PHEMT,” IEEE Electron Device Lett., Vol. 26, pp.533-534, 2005.
[30] H. C. Chiu, Y. C. Chiang and C. S. Wu, “High breakdown voltage (Al0.3Ga0.7)0.5In0.5/P/InGaAs quasi-enhancement-mode pHEMT with field-plate technology,” IEEE Electron Device Lett., Vol. 26, pp. 701-703, 2005.
[31] P. H. Lai; C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng and W. C. Liu; “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, Vol. 53, pp. 1-8, 2006.
[32] M. Zaknoune, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron and Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” Device Research Conference Digest, 56th Annual, 1998, pp. 34–35.
[33] K. Eisenbeiser, R. Droopad and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMTs on GaAs substrates,” IEEE Electron Device Lett., Vol. 20, pp. 507-509, 1999.
[34] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMTs on GaAs substrate,” IEEE Electron Device Lett., Vol. 20, pp. 123-125, 1999.
[35] M. Boudrissa, E. Delos, Y. Cordier, D. Theron and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., Vol. 21, pp.512-514, 2000.
[36] K. Yuan , K. Radhakrishnan , H. Q. Zheng and G. I. Ng, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As high electron mobility transistors on GaAs with InxGa1-xP graded buffer,” J. Vac. Sci. & Technol. B, Vol. 19, pp. 2119-2122, 2001.
[37] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Device Lett., Vol. 24, pp. 724–726, 2003.
[38] Y. J. Li , W. C. Hsu , I. L. Chen, C. S. Lee, Y. J. Chen and K. Lo , “Improved characteristics of metamorphic InAlAs/InGaAs high electron mobility transistor with symmetric graded InxGa1-xAs channel,” J. Vac. Sci. & Technol. B, Vol. 22, pp. 2429-2433, 2004.
[39] E. Y. Chang, Y. C. Lin, G. J. Chen, H. M. Lee, G. W. Huang, D. Biswas and C. Y Chang, “Composite-channel metamorphic high electron mobility transistor for low-noise and high-linearity applications,” Jpn. J. Appl. Phys., Part2, Vol. 43, pp. L871-L872, 2004.
[40] B. U. H. Klepser, C. Bergamaschi, W. Patrick and M. Beck, “Comparison and optimisation of different ohmic contact metallisations for InP-HEMT structures with doped and undoped cap-layers,” Indium Phosphide and Related Materials, 1994, pp. 174-177.
[41] H. C. Duran, L. Ren, M. Beck, M.A. Py, M. Begems and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMT's,” IEEE Trans. Electron Devices, Vol. 45, pp. 1219-1225, 1998
[42] D. P. Docter, K. R. Elliott, A. E. Schmitz, K. Kiziloglu, J. J. Brown, D. S. Harvey and H. M. Karatnicki, “Low noise InAlAs/InGaAs HEMTs grown by MOVPE,” Indium Phosphide and Related Materials, 1998, pp. 219-222.
[43] R. Grundbacher, R. Lai, M. Nishimoto, T.P. Chin, Y.C. Chen, M. Barsky, T. Block and D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” IEEE Electron Device Lett., Vol. 20, pp. 517-519, 1999.
[44] P. M. Smith, K. Nichols, W. Kong, L. MtPleasant, D. Pritchards, R. Lender, J. Fisher, R. Actis, D. Dugas, D. Meharry and A.W. Swanson, “Advances in InP HEMT technology for high frequency applications,” Indium Phosphide and Related Materials, 2001, pp. 9-14.
[45] C. Meliani, G. Post, G. Rondeau, J. Decobert, W. Mouzannar, E. Dutisseuil and R. Lefevre, “DC-92 GHz ultra-broadband high gain InP HEMT amplifier with 410 GHz gain-bandwidth product,” Electron. Lett., Vol. 38, pp. 1175-1177, 2002.
[46] H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials,” Jpn. J. Appl. Phys., Part1, Vol. 38, pp. 1098-1102, 1999.
[47] W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su and I Lindau, ”New and unified model for Schottky barrier and III-V insulator interface states formation,” J. Vac. Sci. & Technol., Vol. 16, pp. 1422-1433, 1979.
[48] V. Heine, “Theory of surface states,” Phys. Rev., Vol. 138, pp. A1689-A1696, 1965.
[49] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. & Technol. B, Vol. 4, pp. 1130-1138, 1986.
[50] H. Hasegawa, “Metal-semiconductor interfaces,” A. Hiraki Ed. Tokyo: IOS Press, 1995, pp. 280.
[51] J. M. Woodall and J. L. Freeouf, “GaAs metallization: some problems and trends,” J. Vac. Sci. & Technol., Vol. 19, pp. 794-798, 1981.
[52] N. J. Wu, T. Hashizume and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in-situ photopluse-asisted electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 33, pp. 936-941, 1994.
[53] T. Hashizume, G. Schweeger, N. J. Wu and H. Hasegawa, “Novel in-situ electrochemical technology for formation of oxide-free and defect-free Schottky contact to GaAs and related low-dimensional structures,” J. Vac. Sci. & Technol. B, Vol. 12, pp. 2660-2666, 1994.
[54] N. J. Wu, T. Hashizume, H. Hasegawa and Y. Amemiya, “Schottky contacts on n-InP with high barriers and reduced Fermi-level pinning by a in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol.34 , pp. 1162-1167, 1995.
[55] S. Uno, T. Hashizume, S. Kasai, N. J. Wu and H. Hasegawa, “0.86 eV platinum Schottky barrier on indium phosphide by in situ electrochemical process and its application to MESFETs,” Jpn. J. Appl. Phys., Part 1, Vol. 35, pp. 1258-1263, 1996.
[56] H. Hasegawa, T. Sato and T. Hashizume, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. & Technol. B, Vol. 15, pp. 1227-1235, 1997.
[57] T. Sato, S. Uno, T. Hashizume and H. Hasegawa, “Large Schottky barrier heights on indium phosphide-based materials realized by in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 36 , pp. 1811-1817, 1997.
[58] T. Sato, C. Kaneshiro and H. Hasegawa, “The strong correlation between interface microstructure and barrier height in Pt/n-InP Schottky contacts formed by an in situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 38 , pp. 1103-1106, 1999.
[59] N. J. Wu, T. Hashizume and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in situ photopulse- assisted electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 33 , pp. 936-941, 1994.
[60] T. sato, S. Kasai and H. Hasegawa, “Current transport and capacitance-voltage characteristics of GaAs and InP nanometer-sized Schottky contacts formed by in situ electrochemical process,” Appl. Surf. Sci., Vol. 175, pp. 181-186, 2001.
[61] T. Hashizume, H. Hasegawa, T. Sawada, A. Grűb and H. L. Hartnagel, “Deep level characteristics of submillimeter-wave GaAs Schottky diodes produced by a novel in situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 32, pp. 486-490, 1993.
[62] P. Allongue and E. Souteyrand, “Schottky barrier formation of various metals on n-GaAs (100) by electrochemical deposition,” J. Vac. Sci. & Technol. B, Vol. 5, pp. 1644-1649, 1987.
[63] T. Okumura, S. I. Yamamoto and M. Shimura, “GaAs Schottky diodes with ideality factor of unity fabricated by in situ photoelectrochemical process,” Jpn. J. Appl. Phys., Part 1, Vol. 32 , pp. 2626-2631, 1993.
[64] H. I. Chen, C. K. Hsiung and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., Vol. 18, pp.620-626, 2003.
[65] H. I. Chen, Y. I. Chou and C. Y. Chu, “A novel high-sensitive Pd-InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, Vol. 85, pp.10-18, 2002.
[66] H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performance between electorless plated and thermal evaporated Pd-InP Schottky diodes,” Semicond. Sci. Technol., Vol. 18, pp.104-110, 2003.
[67] H. I. Chen, Y. I. Chou and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, Vol. 92, pp.6-16, 2003.
[68] H. Yamagishi, “Barrier height of metal/InP Schottky contacts with interface oxide layer,” Jpn. J Appl. Phys., Vol. 25, pp.997-1001, 1988.
[69] Z. Q. Shi and W. A. Anderson, “MIS diodes on n-InP having an improved interface,” Solid-State Electron., Vol.34, pp. 285-289, 1991.
[70] J. Kolnik, J. Ivanco and M Ozvold, “Metal thin insulator silicon Schottky diodes with plasma deposited silicon-nitride interfacial layer,” Phys. Status Solidi A-Appl. Res., Vol. 130, pp. 245-251, 1992.
[71] J. Kolnik, J. Ivanco, M Ozvold, F. Wyczisk and J. Olivier, “Increased thermal-stability of Au/GaAs metal-insulator-semiconductor Schottky diodes with silicon-nitride interfacial layer deposition by remote plasma-enhanced chemical-vapor deposition,” J. Appl. Phys., Vol. 73, pp. 5075-5080, 1993.
[72] T. Sugimura, T. Tsuzuku, T. Katsui, Y. Kasai, T. Inokuma, S. Hashimoto, K. Iiyama and S. Takamiya, “A preliminary study of MIS diodes with nm-thin GaAs-oxide layers,” Solid-State Electron., Vol. 43, pp. 1571-1576, 1999.
[73] G. Eftekhari, “Electrical characteristics of selenium-treated GaAs MIS Schottky diodes,” Semicond. Sci. Technol., Vol. 8, pp. 409-411, 1993.
[74] G. Eftekhari, “Effects of sulfur passivation and rapid thermal annealing on the electrical-properties of InP metal-insulator-semiconductor Schottky diodes,” Phys. Status Solidi A-Appl. Res., Vol. 161, pp. 571-576, 1997.
[75] J. X. Sun, D. J. Seo, W. L. O’brien, F. J. Himpsel, A. B. Ellis and T. F. Kuech, “Chemical bonding and electronic properties of SeS2-treated GaAs(100),” J. Appl. Phys., Vol. 85, pp. 969-977, 1999.
[76] M. G. Kang and H. H. Park, “The effective control of Pd/GaAs interface by sulfidation and thermal hydrogenation,” Jpn. J. Appl. Phys., Part 1, Vol. 40, pp. 4454-4457, 2001.
[77] J. S. Herman and F. L. Terry, “Plasma passivation of gallium-arsenide,” J. Vac. Sci. & Technol. A, Vol. 11, pp. 1094-1098, 1993.
[78] Y. G. Wang and S. Ashok, “A study of metal GaAs interface modification by hydrogen plasma,” J. Appl. Phys., Vol. 75, pp. 2447-2454, 1994.
[79] A. Petit, C. Robert-Goumet, L. Bideux, B. Gruzza, Z. Benamara, N. B. Bouiadjra and V. Matolin, “Auger electronic spectroscopy and electrical characterisation of InP(100) surfaces passivated by N2 plasma,” Appl. Surf. Sci., Vol. 234, pp. 451-456, 2004.
[80] T. Sugino, Y. Sakamoto, T. Sumiguchi, K. Nomoto and J. Shirafuji, “Barrier heights of Schottky junctions on n-InP treated with Phosphine plasma,” Jpn. J. Appl. Phys., Vol. 32, pp. L1196-L1199, 1993.
[81] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., Vol. 60, pp. 1223-1224, 1986.
[82] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., Vol. 50, pp. 5052-5053, 1979.
[83] T. C. Lee, S. Fung, C. D. Beling and H. L. Au, “A systematic approach to the measurement of ideality factor, series resistance and barrier height for Schottky diodes,” J. Appl. Phys., Vol. 72, pp. 4739-4742, 1992.
[84] W. Gao, P. R. Berger, R. G. Hunsperger, G. Zydzik, W. W. Rhodes, H. M. O’Bryan, D. Sivco and A. Y. Cho, “Transparent and opaque Schottky contacts on undoped In0.52Al0.48As grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 66, pp. 3471-3473, 1995.
[85] E. H. Rhoderick and R. H. Williams, “Metal-semiconductor contacts 2nd ed.,” Oxford Science Publications, 1988.
[86] R. V. Ghita, E. Vasile and D. Cengher, “Native oxide on AlGaAs epilayer,” Thin Solid Films, Vol. 338, pp. 46-48, 1999.
[87] P. Cova, R. Menozzi, F. Fantini, M. Pavesi, “A study of hot-electron degradation effects in pseudomorphic HEMTs,” Microelectronic Reliability, Vol. 37, pp.1131-1135, 1997.
[88] G. Meneghesso, C. Crosato, F. Garat, G Martines, A. Paccagnella, E. Zanoni, “Failure mechanisms of Schottky gate contact degradation and deep traps creation in AlGaAs/InGaAs PM-HEMTs submitted to accelerated life tests,” Microelectronic Reliability, Vol. 38, pp.1227-1232, 1998.
[89] M. Dammann, M. Chertouk, W. Jantz, K. Khler, W. Marsetz, K. H. Schmidt, G. Weimann, “Effect of drain voltage on channel temperature and reliability of pseudomorphic InP-based HEMTs,” Microelectronic Reliability, Vol. 40, pp.287-291, 2000.
[90] H. Ohyama, E. Simoen, S. Kuroda, C. Claeys, Y. Takami, T. Hakata, K. Kobaytashi, M. Nakabayashi and H Sunaga, “Degradation and recovery of AlGaAs/GaAs p-HEMT irradiated by high-energy particle,” Microelectronic Reliability, Vol. 42, pp.79-85, 2001.
[91] M. Dammann, F. Benkhelifa, M. Meng and W. Jantz, “Reliability of metamorphic HEMTs for power applications,” Microelectronic Reliability, Vol. 42, pp.1569-1573, 2002.
[92] T. Hisaka, Y. Aihara, Y. Nogami, H. Sasaki, Y. Uehara, N. Yoshida and K. Hayashi, “Degradation mechanisms of GaAs PHEMTs in high humidity conditions,” Microelectronic Reliability, Vol. 45, pp.1894-1900, 2005.
[93] H. K. Huang, C. S. Wang, M. P. Houng and Y. H. Wang, “Hot-electron effects on AlGaAs/InGaAs/GaAs PHEMTs under accelerated DC stresses,” Microelectronic Reliability, Vol. 46, pp.2025-2031, 2006.
[94] T. Enoki, H. Ito and Y. Ishii, “Reliability study on InAlAs/InGaAs HEMTs with an Inp recess-etch stopper and refractory gate metal,” Solid-State Electron., Vol. 41, pp.1651-1656, 1997.
[95] M. Dammann, M. Chertouk, W. Jantz, K. Khler, K. H. Schmidt and G. Weimann, “Reliability of passivated 0.15μm InAlAs/InGaAs HEMTs with pseudomorphic channel,” Reliability Physics Symposium Proceedings, 1999, pp.99-102.
[96] M. Dammann, M. Chertouk, W. Jantz, K. Khler and G. Weimann, “Reliability of InAlAs/ImGaAs HEMTs grown on GaAs substrate with metamorphic buffer,” Microelectronic Reliability, Vol. 40, pp.1709-1713, 2000.
[97] P. F. Marsh, C. S. Whelan, W. E. Hoke, R. E. Loeni III and T. E. Kazior, “Reliability of metamorphic HEMTs on GaAs substrates,” Microelectronic Reliability, Vol. 42, pp. 997-1002, 2002.
[98] F. Gao, “High reliability in PHEMT MMICs with dual-etch-stop AlAs layers for high-speed RF switch applications,” Microelectronic Reliability, Vol. 43, pp.829-837, 2003.
[99] M. Dammann, A. Leuther, R. Quay, M. Meng, H. Konstanzer, W. Jantz and M. Mikulla, “Reliability of 70 nm metamorphic HEMTs,” Microelectronic Reliability, Vol. 44, pp. 939-943, 2004.
[100] M. Dammann, A. Leuther, A. Tessmann, H. Massler, M. Mikulla and G. Weimann, “Reliability of 50 nm low-noise metamorphic HEMTs and LNAs,” Electron. Lett., Vol. 41, pp. 699-701, 2005.
[101] Chin-Tien Lin, “Fabrication and Sensing Characteristics of Transistor- based Hydrogen Sensors”, Dept., C. E., NCKU, June, 2006.