簡易檢索 / 詳目顯示

研究生: 陳子輿
Chen, Zih-Yu
論文名稱: 藉表面電漿共振儀分析蛋白質吸附於不同親疏水性質之磺酸根癸烷硫醇混合自組裝單分子層
Analyzing protein adsorption on hydrophilic or hydrophobic mixed self-assembled monolayers containing 10-mercaptodecanesulfonic acid by surface plasmon resonance
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 混合自組裝單分子層10-磺酸根癸烷硫醇表面電漿共振儀
外文關鍵詞: mixed self-assembled monolayer, 10-mercaptodecanesulfonic acid, surface plasmon resonance
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當生醫材料置入人體時,最先靠近基材表面是水分子,再來蛋白質會吸附在基材上,最後細胞才貼附上來,所以細胞與基材間蛋白質的吸附量以及其形態是影響細胞貼附的重要因素。
    自組裝單分子層(SAMs)具有緻密、排列良好之特性,且製備容易,所以在許多研究中藉由改變硫醇末端官能基,將基材修飾成具有各種不同性質的表面。在本研究中將模仿肝素結構,以磺酸根硫醇(10-mercaptodecanesulfonic acid, 10-MDS)為主,搭配氫氧根硫醇(11-hydroxy-1-undecanthiol, 11-HUT)、甲烷基硫醇(1-decanthiol, 1-DT),製出不同親疏水性質的混合自組裝單分子層,進行SAMs表面性質分析及蛋白質吸附分析。
    本實驗以靜態接觸角、循環伏安法及交流阻抗分析、紅外線光譜對SAMs表面做分析。再使用表面電漿共振儀,分析SAMs與白蛋白及纖維蛋白原間吸附狀況。表面親水之氫氧根硫醇(11-HUT)SAM不論吸附何種蛋白質其吸附量為都最低;表面疏水之甲烷基硫醇(1-DT)SAM則吸附量都較高;而表面帶負電之磺酸根硫醇(10-MDS)SAM會因不同蛋白質溶液而有不同程度吸附;若是混合自組裝單分子層,則與吸附蛋白質溶液不同及表面組成的不同,有不同吸附情形。最後在吸附混合蛋白質溶液時,則會產生不同競爭吸附情形。

    As the biomaterials were implanted into the human body, water molecules were first absorbed onto the materials surface, followed by the protein and cells, sequentially. Therefore, the interactions between the cell and material surface are believed to be influenced by the amount of protein adsorbed as well as the conformation of the adsorbed protein.
    Due to its ease of preparation as well as a densely-packed and well-defined structure, self-assembled monolayer (SAM) prepared by alkanethiol has been utilized as a model surface with a wide variety of surface property by simply changing the terminal functionality of alkanethiol. In this investigation, heparin-like SAMs with different surface hydrophilicity were prepared by mixing 10-mercaptodecanesulfonic acid (10-MDS) with 1-decanthiol (1-DT) or 11-hydroxy-1-undecanthiol (11-HUT). Protein adsorption characteristic as well as surface properties on these SAMs were evaluated by different techniques.
    The surface properties of these SAMs were determined by contact angle, cyclic voltammetry, electrochemical impedance spectroscopy and infrared reflection absorption spectroscopy. Protein adsorption for bovine serum albumin and bovine fibrinogen was determined by surface plasmon resonance spectroscopy. No matter of what kind of protein used, the amount of protein adsorbed was lowest on the SAMs prepared by the pure –OH terminated alkanethiol (11-HUT). In contrast, the hydrophobic SAMs prepared by the –CH3 terminated alkanethiol (1-DT) adsorbed the largest amount of protein; albumin and fibrinogen. For the SAM prepared by the negative-charged sulfonic acid-terminated alkanethiol (10-MDS), the amount of protein adsorbed was influenced by the type of protein used. For the SAMs made by the mixtures of 10-MDS and 11-HUT or 1-DT, protein adsorption characteristic was not only determined by the type of protein used but also by the surface characteristics. Competition in protein adsorption was also noted when protein mixture solutions or protein adsorption sequence were used.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第1章 緒論 1 第2章 文獻回顧 2 2-1 凝血機制與血液相容性 2 2-2 不同表面性質之蛋白質吸附 6 2-3 自組裝單分子層 8 2-4 蛋白質吸附分析方式 11 2-5 研究目的 13 第3章 實驗內容 14 3-1 藥品 14 3-2 實驗步驟 16 3-2-1 磺酸根硫醇的合成方法 16 3-2-2 金基材製備 18 3-2-3 自組裝單分子層製作、保存與分析 19 3-3 實驗儀器及其原理 22 3-3-1 物理氣相沉積儀 22 3-3-2 核磁共振儀 26 3-3-3 靜態接觸角測定儀 28 3-3-4 電化學頻譜分析儀 30 3-3-5 紅外線光譜儀 38 3-3-6 表面電漿共振儀 40 第4章 結果與討論 44 4-1 磺酸根硫醇的結構鑑定 44 4-2 自組裝單分子層表面分析 46 4-2-1 親疏水性質 46 4-2-2 表面覆蓋率 48 4-2-3 表面排列情形 50 4-2-4 表面結構分析 55 4-3 蛋白質吸附分析 62 4-3-1 蛋白質吸附量與SPR訊號位移 62 4-3-2 蛋白質吸附分析 74 第5章 結論 80 參考文獻 82

    1. Rao, L.V.M., Williams, T., and Rapaport, S.I., Studies of the activation of factor VII bound to tissue factor. Blood, 1996. 87(9): p. 3738-3748.
    2. Ries, U.J. and Wienen, W., Serine proteases as targets for antithrombotic therapy. Drugs of the Future, 2003. 28(4): p. 355-370.
    3. Salzman, E.W., Merrill, E.W., Binder, A., Wolf, C.F.W., Ashford, T.P., and Austen, W.G., Protein platelet interaction on heparinized surfaces. Journal of Biomedical Materials Research, 1969(1): p. 69-81.
    4. Young, B.R., Lambrecht, L.K., Albrecht, R.M., Mosher, D.F., and Cooper, S.L., Platelet-protein interactions at blood-polymer interfaces in the canine test model. Transactions American Society for Artificial Internal Organs, 1983. 29: p. 442-447.
    5. Jozefowicz, M. and Jozefonvicz, J., Antithrombogenic polymers. Pure and Applied Chemistry, 1984. 56(10): p. 1335-1344.
    6. Engbers, G.H. and Feijen, J., Current techniques to improve the blood compatibility of biomaterial surfaces. International Journal of Artificial Organs, 1991. 14(4): p. 199-215.
    7. Lever, R. and Page, C.P., Novel drug development opportunities for heparin. Nat Rev Drug Discov, 2002. 1(2): p. 140-148.
    8. Kasemo, B., Biological surface science. Surface Science, 2002. 500(1-3): p. 656-677.
    9. Herrwerth, S., Eck, W., Reinhardt, S., and Grunze, M., Factors that determine the protein resistance of oligoether self-assembled monolayers - Internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society, 2003. 125(31): p. 9359-9366.
    10. Zwaal, R.F.A. and Hemker, H.C., New comprehensive biochemistry vol. 13. blood coagulation, in Zwaal, R. F. A. And H. C. Hemker. 1986. p. XII+321P.
    11. Nuzzo, R.G. and Allara, D.L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
    12. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5-8): p. 151-256.
    13. Troughton, E.B., Bain, C.D., Whitesides, G.M., Nuzzo, R.G., Allara, D.L., and Porter, M.D., Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates - structure, properties, and reactivity of constituent functional-groups. Langmuir, 1988. 4(2): p. 365-385.
    14. Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., and Nuzzo, R.G., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
    15. Sabatani, E., Cohenboulakia, J., Bruening, M., and Rubinstein, I., Thioaromatic monolayers on gold - a new family of self-assembling monolayers. Langmuir, 1993. 9(11): p. 2974-2981.
    16. Weckenmann, U., Mittler, S., Naumann, K., and Fischer, R.A., Ordered self-assembled monolayers of 4,4 '-biphenyldithiol on polycrystalline silver: Suppression of multilayer formation by addition of tri-n-butylphosphine. Langmuir, 2002. 18(14): p. 5479-5486.
    17. Laibinis, P.E. and Whitesides, G.M., Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. Journal of the American Chemical Society, 1992. 114(23): p. 9022-9028.
    18. Pellerite, M.J., Dunbar, T.D., Boardman, L.D., and Wood, E.J., Effects of fluorination on self-assembled monolayer formation from alkanephosphonic acids on aluminum: Kinetics and structure. Journal of Physical Chemistry B, 2003. 107(42): p. 11726-11736.
    19. Smith, T., The hydrophilic nature of a clean gold surface. J. Colloid Interface Sci., 1980. 75(1): p. 51-55.
    20. Srinivasan, U., Houston, M.R., Howe, R.T., and Maboudian, R., Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines. Journal of Microelectromechanical Systems, 1998. 7(2): p. 252-260.
    21. Mrksich, M., Chen, C.S., Xia, Y.N., Dike, L.E., Ingber, D.E., and Whitesides, G.M., Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(20): p. 10775-10778.
    22. Singh, P., Onodera, T., Mizuta, Y., Matsumoto, K., Miura, N., and Toko, K., Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immunosensor: Fabrication and advantages. Sensors and Actuators B-Chemical, 2009. 137(2): p. 403-409.
    23. Holmlin, R.E., Chen, X.X., Chapman, R.G., Takayama, S., and Whitesides, G.M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
    24. Benes, E., Groschl, M., Burger, W., and Schmid, M., Sensors based on piezoelectric resonators. Sensors and Actuators a-Physical, 1995. 48(1): p. 1-21.
    25. Decker, E.L., Frank, B., Suo, Y., and Garoff, S., Physics of contact angle measurement. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1999. 156(1-3): p. 177-189.
    26. Finklea, H.O. and Hanshew, D.D., Electron-transfer kinetics in organized thiol monolayers with attached pentaammine(pyridine)ruthenium redox centers. Journal of the American Chemical Society, 1992. 114(9): p. 3173-3181.
    27. Fernandez-Sanchez, C., McNeil, C.J., and Rawson, K., Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trac-Trends in Analytical Chemistry, 2005. 24(1): p. 37-48.
    28. Diao, P., Jiang, D.L., Cui, X.L., Gu, D.P., Tong, R.T., and Zhong, B., Studies of structural disorder of self-assembled thiol monolayers on gold by cyclic voltammetry and ac impedance. Journal of Electroanalytical Chemistry, 1999. 464(1): p. 61-67.
    29. Willets, K.A. and Van Duyne, R.P., Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007. 58: p. 267-297.
    30. Otto, A., Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection. Zeitschrift Fur Physik, 1968. 216(4): p. 398-&.
    31. Kretschm.E and Raether, H., Radiative decay of non radiative surface plasmons excited by light. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie, 1968. A 23(12): p. 2135-&.
    32. Morgan, H. and Taylor, D.M., A surface-plasmon resonance immunosensor based on the streptavidin biotin complex. Biosensors & Bioelectronics, 1992. 7(6): p. 405-410.
    33. Boozer, C., Ladd, J., Chen, S.F., and Jiang, S.T., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Analytical Chemistry, 2006. 78(5): p. 1515-1519.
    34. Ladd, J., Boozer, C., Yu, Q.M., Chen, S.F., Homola, J., and Jiang, S., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004. 20(19): p. 8090-8095.
    35. Myszka, D.G., Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Current Opinion in Biotechnology, 1997. 8(1): p. 50-57.
    36. Myszka, D.G., Jonsen, M.D., and Graves, B.J., Equilibrium analysis of high affinity interactions using BIACORE. Analytical Biochemistry, 1998. 265(2): p. 326-330.
    37. Schwartz, D.K., Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry, 2001. 52: p. 107-137.
    38. Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., and Nuzzo, R.G., Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surfaces, Cu, Ag, Au. Journal of the American Chemical Society, 1991. 113(19): p. 7152-7167.
    39. Arnold, R., Terfort, A., and Woll, C., Determination of molecular orientation in self-assembled monolayers using IR absorption intensities: The importance of grinding effects. Langmuir, 2001. 17(16): p. 4980-4989.
    40. Dijksma, M., Boukamp, B.A., Kamp, B., and van Bennekom, W.P., Effect of hexacyanoferrate(ii/iii) on self-assembled monolayers of thioctic acid and 11-mercaptoundecanoic acid on gold. Langmuir, 2002. 18(8): p. 3105-3112.
    41. Bandyopadhyay, K., Vijayamohanan, K., Venkataramanan, M., and Pradeep, T., Self-assembled monolayers of small aromatic disulfide and diselenide molecules on polycrystalline gold films: A comparative study of the geometrical constraint using temperature-dependent surface-enhanced raman spectroscopy, X-ray photoelectron spectroscopy, and electrochemistry. Langmuir, 1999. 15(16): p. 5314-5322.
    42. Dalmia, A., Liu, C.C., and Savinell, R.F., Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective detection of dopamine. Journal of Electroanalytical Chemistry, 1997. 430(1-2): p. 205-214.
    43. Chang, Y., Chen, S.F., Zhang, Z., and Jiang, S.Y., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
    44. George B. Sigal, M.M., and George M. Whitesides, Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc., 1998. 120: p. 10.
    45. Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N., and Yee, S.S., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14(19): p. 5636-5648.
    46. Chen, C.Y., Gu, X.T., and Zhou, J.H., Binding studies of paeonolum with bovine serum albumin using spectroscopic methods. Spectroscopy-an International Journal, 2007. 21(1): p. 53-60.
    47. Mattson, J.S. and Jones, T.T., Infrared spectrophotometric observations of adsorption of fibrinogen from solution at optically transparent carbon-film electrode surfaces
    Analytical Chemistry, 1976. 48(14): p. 2164-2167.
    48. Gupta, G., Sugimoto, M., Matsui, Y., and Kondoh, J., Use of a low refractive index prism in surface plasmon resonance biosensing. Sensors and Actuators B-Chemical, 2008. 130(2): p. 689-695.
    49. Innes, R.A. and Sambles, J.R., Optical characterization of gold using surface-plasmon polaritons. Journal of Physics F-Metal Physics, 1987. 17(1): p. 277-287.
    50. Johnston, K.S., Karlsen, S.R., Jung, C.C., and Yee, S.S., New analytical technique for characterization of thin-films using surface-plasmon resonance. Materials Chemistry and Physics, 1995. 42(4): p. 242-246.
    51. Silin, V., Weetall, H., and Vanderah, D.J., SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). J. Colloid Interface Sci., 1997. 185(1): p. 94-103.
    52. Perlmann, G.E. and Longsworth, L.G., The specific refractive increment of some purified proteins. J Am Chem Soc, 1948. 70(8): p. 2719-2724.
    53. Brill, A.S., Olin, J.S., and Siegel, B.M., The specific volume of dry protein. The Journal of Cell Biology, 1962. 13(2): p. 249-251.

    無法下載圖示 校內:2015-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE