簡易檢索 / 詳目顯示

研究生: 黃亭瑋
Huang, Ting-Wei
論文名稱: 合成具醯胺或羥基之重氮化合物並探討其分子內N-H及O-H插入反應
Investigations on the Synthesis of Diazo Compounds with Amide or Hydroxyl Functional Group and Their Applications in Intramolecular N-H and O-H Insertion Reactions
指導教授: 周鶴軒
Chou, Ho-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 142
中文關鍵詞: 具醯胺或羥基之重氮化合物分子內N-H及O-H插入反應2-嗎啉酮衍生物對二氧環己酮衍生物
外文關鍵詞: Diazo compounds with amide or hydroxyl groups, Intramolecular N-H and O-H insertion reaction, Morpholin-2-ones
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究將探討具有醯胺(Amide group)或是羥基(Hydroxyl group)的重氮化合物之合成,以及分別對其進行分子內N-H或O-H插入反應(Intramolecular N-H / O-H insertion)之結果。
    我們使用實驗室開發的新型氮轉移試劑,能夠合成出不同胺基酸側鏈並且具有醯胺或是羥基的重氮化合物,在具有醯胺官能基的例子中得知必須藉由羰基(Carbonyl group)等較強的拉電子基來降低二級胺的親核性,才能避免二級胺與氮轉移試劑進行副反應;而具有羥基之重氮化合物則是在氮轉移反應中觀察到形成大量染料,推測為影響產率的主要因素。
    第一個目標產物為常見於藥物結構中的2-嗎啉酮衍生物(Morpholin-2-one),可透過重氮化合物進行分子內插入反應獲得,在本篇研究中成功合成具有不同胺基酸側鏈之重氮化合物,解決了過去文獻中取代基被限制的問題,並且可以在溫和的條件下進行分子內N-H插入反應,可惜的是在1, 2-氫轉移反應的競爭下,由於立體障礙、醯胺親核性較弱,以及距離金屬卡賓碳較遠等空間上的不利因素,造成大部分具有CH2側鏈的例子形成共振穩定性高的烯烴副產物。
    第二個目標產物則是在生醫材料的領域中做為聚合物之單體的對二氧環己酮衍生物(p-Dioxanone),已有研究顯示若在3號碳的位置接上甲基,可以透過比例來調整其相對應的共聚合物之材料特性,但是目前進行3號碳位置取代之研究非常少,其中3-甲基-對二氧環己酮的合成產率僅有20-50%。因此在本篇研究中合成具有羥基的重氮化合物來進行分子內O-H插入反應,成功獲得具有苄基保護之麩胺酸側鏈的對二氧環己酮衍生物,其餘的例子中則是產生烯烴產物。
    除此之外我們嘗試降溫以及變換金屬催化劑,皆無法改善分子內插入反應失敗的例子,但是若同時將親核性以及空間上的不利因素排除,就能夠將主要反應由1, 2-氫轉移改變為分子間插入反應(Intermolecular insertion)。因此總和以上所述,我們認為此類具有CH2側鏈之重氮化合物比起分子內插入反應,更適合進行分子間插入反應。

    By using the N-transfer reagent developed in our laboratory, we have successfully synthesized diazo compounds with amino acid side chains and amide or hydroxyl functional group. In the case of amide functional group, it revealed that the nucleophilicity of secondary amine must be reduced by strong electron-withdrawing groups such as carbonyl group, so as to avoid the unexpected side product in N-transfer reaction; The diazo compounds with hydroxyl group were found to generate a large amount of dyes during N-transfer reaction, which might be the main factor causing the yield decreased.
    Morpholin-2-ones are among the commonly encountered scaffolds in drugs relevant. In this study, diazo compounds with different amino acid side chains and amide functional group were synthesized for intramolecular N-H insertion. It solved the problem of limited substituents in the previous literature, and could carry out intramolecular N-H insertion reaction under mild conditions.
    Previous studies have shown that the properties of poly-p-dioxanone can be adjusted through the substituents on carbon atom at position 3. Therefore, in this study, diazo compounds with hydroxyl group were synthesized for intramolecular O-H insertion reaction, and p-dioxanone derivatives with benzyl group protected glutamic acid side chain were successfully obtained.
    Moreover, we tried to reduce the temperature and change the metal catalyst, but neither improved the intramolecular insertion reaction. However, if the nucleophilicity and spatial disadvantages are excluded at the same time, the major reaction could be changed from 1, 2-hydride shift to intermolecular insertion reaction. In summary, compared with intramolecular insertion reaction, we think that the diazo compounds with CH2 side chain are more suitable for intermolecular insertion reaction.

    摘要 I 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 X 流程圖 XI 第一章 前言 1 1.1. 含氮雜環-嗎啉化合物介紹及合成方法 1 1.2. 含氧雜環-對二氧環己酮化合物介紹及合成方法 4 1.3. 重氮化合物介紹及合成方法 6 1.4. 卡賓、金屬卡賓 8 1.5. 研究動機 10 第二章 結果與討論 11 2.1. 分子內N-H插入反應 11 2.1.1. 分子內N-H插入反應初步優化條件 11 2.1.2. 二級胺取代基 (R1)之探討以及分子內N-H插入反應條件優化 14 2.1.2.1. 酯化反應 14 2.1.2.2. 去Boc保護反應條件優化 15 2.1.2.3. 氮轉移反應條件優化 17 2.1.2.4. 分子內N-H插入反應條件優化 22 2.1.3. 各胺基酸側鏈 (R2) 之重氮化合物合成及分子內N-H插入反應 24 2.2. 分子內O-H插入反應 29 2.2.1. 各胺基酸與乙二醇之酯化反應 29 2.2.2. 去Boc保護反應 30 2.2.3. 氮轉移反應 32 2.2.4. 分子內O-H插入反應 34 2.2.5. 催化條件探討 35 第三章 結論 38 第四章 實驗步驟 39 4.1. General Information 39 4.1.1. Materials 39 4.1.2. Methods 39 4.1.3. Machines 39 4.2. Synthetic Procedure for Compounds 2a-b, 3a-b and 4a 40 4.3. Synthetic Procedure for Amide α-Diazo Compounds 44 4.3.1. Synthetic Procedure for Compounds 5a, 5c-d 44 4.3.2. General Procedure for Esterification Reaction (B) 46 4.3.3. General Procedure for Boc-deprotection Reaction (C) and N-transfer Reaction (D) 50 4.4. General Procedure for Intramolecular N-H Insertion Reaction (E) 57 4.5. General Procedure for Intermolecular Insertion Reaction (F) 61 4.6. Synthetic Procedure for Hydroxy α-Diazo Compounds 64 4.6.1. General Procedure for Esterification Reaction (G) 64 4.6.2. General Procedure for Boc-deprotection Reaction (C) and N-transfer Reaction (H) 67 4.7. General Procedure for Intramolecular O-H Insertion Reaction (I) 73 4.8. Synthetic Procedure for Diazonium salts 76 4.9. Synthetic Procedure for Compound S1 and S2 78 第五章 參考文獻 83 第六章 附錄 87

    1. Kumari, A.; Singh, R. K., Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorganic chemistry, 2020, 96, 103578.
    2. Pal’Chikov, V., Morpholines. Synthesis and biological activity. Russian Journal of Organic Chemistry, 2013, 49 (6), 787-814.
    3. Tzara, A.; Xanthopoulos, D.; Kourounakis, A. P., Morpholine as a scaffold in medicinal chemistry: An update on synthetic strategies. ChemMedChem, 2020, 15 (5), 392-403.
    4. Palchykov, V. A.; Chebanov, V. A., Recent progress in the synthesis of morpholines. Chemistry of Heterocyclic Compounds, 2019, 55 (4), 324-332.
    5. Ku, I. W.; Cho, S.; Doddareddy, M. R.; Jang, M. S.; Keum, G.; Lee, J.-H.; Chung, B. Y.; Kim, Y.; Rhim, H.; Kang, S. B., Morpholin-2-one derivatives as novel selective T-type Ca2+ channel blockers. Bioorganic & medicinal chemistry letters, 2006, 16 (19), 5244-5248.
    6. Wirth, T.; Knight, D., Morpholin-2-one derivatives via intramolecular acid-catalyzed hydroamination. Synthesis, 2019, 51 (07), 1643-1648.
    7. Bardiot, D. e.; Thevissen, K.; De Brucker, K.; Peeters, A.; Cos, P.; Taborda, C. P.; McNaughton, M.; Maes, L.; Chaltin, P.; Cammue, B. P., 2-(2-Oxo-morpholin-3-yl)-acetamide derivatives as broad-spectrum antifungal agents. Journal of medicinal chemistry, 2015, 58 (3), 1502-1512.
    8. Elati, C. R.; Kolla, N.; Gangula, S.; Naredla, A.; Vankawala, P. J.; Avinigiri, M. L.; Chalamala, S.; Sundaram, V.; Mathad, V. T.; Bhattacharya, A., A convergent approach to the synthesis of aprepitant: a potent human NK-1 receptor antagonist. Tetrahedron letters, 2007, 48 (45), 8001-8004.
    9. Wood, M. E.; Bissiriou, S.; Lowe, C.; Windeatt, K. M., Investigations into the effectiveness of deuterium as a “protecting group” for C–H bonds in radical reactions involving hydrogen atom transfer. Organic & biomolecular chemistry, 2008, 6 (17), 3048-3051.
    10. Loza, E.; Sarciaux, M.; Ikaunieks, M.; Katkevics, M.; Kukosha, T.; Trufilkina, N.; Ryabova, V.; Shubin, K.; Pantel, L.; Serri, M., Structure-activity relationship studies on the inhibition of the bacterial translation of novel Odilorhabdins analogues. Bioorganic & medicinal chemistry, 2020, 28 (11), 115469.
    11. Anslow, A. S.; Cox, G. G.; Harwood, L. M., Development of an alanine-derived chiral stabilized azomethine ylid based on the 5-(2′-naphthyl) morpholin-2-one template. Chemistry of Heterocyclic Compounds, 1995, 31 (10), 1222-1230.
    12. Trstenjak, U.; Ilaš, J.; Kikelj, D., Advances in the Synthesis of Morpholin-3-ones and Morpholin-2-ones. Synthesis, 2012, 44 (23), 3551-3578.
    13. Trstenjak, U.; Ilaš, J.; Kikelj, D., Synthesis of alkyl N-(4-nitrophenyl)-3/2-oxomorpholine-2/3-carboxylates by rhodium (II) acetate catalyzed O–H and N–H carbene insertion. Tetrahedron Letters, 2013, 54 (26), 3341-3343.
    14. Moyer, M. P.; Feldman, P.; Rapoport, H., Intramolecular NH, OH, and SH insertion reaction. Synthesis of heterocycles from α-diazo β-keto esters. Journal of organic chemistry, 1985, 50 (25), 5223-5230.
    15. Pansare, S. V.; Jain, R. P.; Bhattacharyya, A., Scandium triflate catalyzed diazocarbonyl insertions into heteroatom hydrogen bonds. Tetrahedron letters, 1999, 40 (28), 5255-5258.
    16. West, F.; Naidu, B., Applications of Stevens [1, 2]-Shifts of Cyclic Ammonium Ylides. A Route to Morpholin-2-ones. The Journal of Organic Chemistry, 1994, 59 (20), 6051-6056.
    17. Redin, T.; Finne‐Wistrand, A.; Mathisen, T.; Albertsson, A. C., Bulk polymerization of p‐dioxanone using a cyclic tin alkoxide as initiator. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45 (23), 5552-5558.
    18. Goonoo, N.; Jeetah, R.; Bhaw-Luximon, A.; Jhurry, D., Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 371-391.
    19. Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Jiang, B., Synthesis of metal‐free poly (p‐dioxanone) by phosphazene base catalyzed ring‐opening polymerization. Journal of Applied Polymer Science, 2016, 133 (7).
    20. Niaounakis, M., 10 - Building and Construction Applications. In Biopolymers: Applications and Trends, Niaounakis, M., Ed. William Andrew Publishing: Oxford, 2015; pp 445-505.
    21. Mulinti, P.; Brooks, J. E.; Lervick, B.; Pullan, J. E.; Brooks, A. E., 10 - Strategies to improve the hemocompatibility of biodegradable biomaterials. In Hemocompatibility of Biomaterials for Clinical Applications, Siedlecki, C. A., Ed. Woodhead Publishing: 2018; pp 253-278.
    22. Wolfe, P. S.; Lochee, Y.; Jhurry, D.; Bhaw-Luximon, A.; Bowlin, G. L., Characterization of Electrospun Novel Poly (ester-ether) Copolymers: 1, 4-Dioxan-2-one and D, L-3-Methyl-1, 4-dioxan-2-one. Journal of Engineered Fibers and Fabrics, 2011, 6 (4), 155892501100600409.
    23. Bechtold, K.; Hillmyer, M. A.; Tolman, W. B., Perfectly alternating copolymer of lactic acid and ethylene oxide as a plasticizing agent for polylactide. Macromolecules, 2001, 34 (25), 8641-8648.
    24. Lochee, Y.; Jhurry, D.; Bhaw‐Luximon, A.; Kalangos, A., Biodegradable poly (ester‐ether) s: ring‐opening polymerization of D, L‐3‐methyl‐1, 4‐dioxan‐2‐one using various initiator systems. Polymer international, 2010, 59 (9), 1310-1318.
    25. Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A., Modern organic synthesis with α-diazocarbonyl compounds. Chemical reviews, 2015, 115 (18), 9981-10080.
    26. Hunter, A. C.; Chinthapally, K.; Sharma, I., Rh2 (esp) 2: an efficient catalyst for O–H insertion reactions of carboxylic acids into acceptor/acceptor diazo compounds. WILEY‐VCH Verlag Weinheim: 2016.
    27. Zhu, D.; Ma, J.; Luo, K.; Fu, H.; Zhang, L.; Zhu, S., Enantioselective Intramolecular C− H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie International Edition, 2016, 55 (29), 8452-8456.
    28. Myers, E. L.; Raines, R. T., A Phosphine‐Mediated Conversion of Azides into Diazo Compounds. Angewandte Chemie International Edition, 2009, 48 (13), 2359-2363.
    29. Holton, T. L.; Schechter, H., Advantageous syntheses of diazo compounds by oxidation of hydrazones with lead tetraacetate in basic environments. The Journal of Organic Chemistry, 1995, 60 (15), 4725-4729.
    30. Gilman, H.; Jones, R. G., 2,2,2-Trifluoroethylamine and 2,2,2-Trifluorodiazoethane. Journal of the American Chemical Society, 1943, 65 (8), 1458-1460.
    31. Takamura, N.; Mizoguchi, T.; Koga, K.; Yamada, S., Amino acids and peptides—XIV: A simple and convenient method for preparation of α-substituted α-diazo esters. Tetrahedron, 1975, 31 (3), 227-230.
    32. Schroen, M.; Bräse, S., Polymer-bound diazonium salts for the synthesis of diazoacetic esters. Tetrahedron, 2005, 61 (51), 12186-12192.
    33. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G., Stable carbenes. Chemical Reviews, 2000, 100 (1), 39-92.
    34. Tomioka, H., Persistent triplet carbenes. Accounts of chemical research, 1997, 30 (8), 315-321.
    35. Zhu, S.-F.; Zhou, Q.-L., Transition-metal-catalyzed enantioselective heteroatom–hydrogen bond insertion reactions. Accounts of chemical research, 2012, 45 (8), 1365-1377.
    36. Davis, F. A.; Yang, B.; Deng, J., Asymmetric synthesis of cis-5-tert-butylproline with metal carbenoid NH insertion. The Journal of organic chemistry, 2003, 68 (13), 5147-5152.
    37. Dkhar, P. G.; Lyngdoh, R., Transition states for hydride and methyl 1, 2-migrations in carbene rearrangements to alkenes: An AM1 SCF-MO study. 2005.
    38. Enriquez Garcia, A.; Jalilehvand, F.; Niksirat, P.; Gelfand, B. S., Methionine Binding to Dirhodium (II) Tetraacetate. Inorg. Chem., 2018, 57 (20), 12787-12799.
    39. Gillingham, D.; Fei, N., Catalytic X–H insertion reactions based on carbenoids. Chemical Society Reviews, 2013, 42 (12), 4918-4931.

    下載圖示 校內:2024-08-19公開
    校外:2024-08-19公開
    QR CODE