簡易檢索 / 詳目顯示

研究生: 王志欽
Wang, Chih-Chin
論文名稱: 一維奈米碳材結構分析與模擬之研究
Structure Analysis and Simulation of One-dimensional Carbon Nano-materials
指導教授: 劉全璞
Liu, Chun-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 164
中文關鍵詞: 奈米碳管催化劑奈米顆粒薄膜
外文關鍵詞: simulation, TEM, CNT
相關次數: 點閱:75下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃是以國科會子計畫-奈米碳管成長之新穎分析為主題。研究內容可分為薄膜及奈米顆粒的成長與分析、奈米碳管的成長與分析、奈米碳管之穿透式電子顯微鏡影像與繞射圖模擬等三部分。
    前兩部分的研究方式乃以穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)、原子力顯微鏡(AFM)及其它分析工具,探討(1)以Si及Al2O3為基板、Co為靶材,用直流式磁控濺鍍系統(DC sputter)、分子束磊晶系統(MBE) 、超高真空離子束濺鍍系統(UHV IBS)成長出之Co薄膜及奈米顆粒的結構與型態。(2)以Co為催化劑,用微波電漿輔助化學氣相沈積系統(MPCVD)成長出之奈米碳管的結構與型態。第三部分則是在Unix系統下使用EMS、Semper等程式語言進行奈米碳管之TEM影像與繞射圖模擬。
    研究成果顯示:(一)在Co薄膜及奈米顆粒成長方面:(1)發現超高真空離子束濺鍍法成長的Co薄膜較直流式磁控濺鍍法成長的Co薄膜有較佳之電性。(3)超高真空離子束濺鍍法產生的Co薄膜有很強的優選方向。(4)超高真空離子束濺鍍系統控制製程可生長出單晶的CoSi2奈米線。(二)以Co為催化劑成長一維奈米碳材方面:(1)發現催化劑結晶性、催化劑結構、催化劑形狀、基板材質與方向性、薄膜厚度、氫氣蝕刻條件等參數都會影響奈米碳管之成長。(2)以FCC結構之Co膜為催化劑較HCP結構之Co膜為催化劑容易成長中空的奈米碳管。(3)以Al2O3(0001)為基板成長之Co膜較Al2O3(11-20)為基板成長之Co膜容易長出奈米碳管。(4)只有在適當的膜厚時才能長出奈米碳管。(5)不經H2 etching, 直接用MPCVD也能長出品質良好的奈米碳管。且通常經過H2 etching之Co膜,需在島狀區域或團簇區域才能產生奈米碳管;然而沒有經過H2 etching之Co膜,在團簇區域及基板上任何位置均可產生奈米碳管。 (三)在一維奈米碳材之電腦模擬方面:目前已完成了各種單層奈米碳管及數種多層奈米碳管之TEM影像與繞射圖模擬。

    Structure Analysis and Simulation of One-dimensional Carbon Nano-materials

    第一章 緒論………………………………………………………………….......1 1-1 前言…………………………………………………………………......1 1-2 研究動機與目的…………………………………………………..…… 10 第二章 文獻回顧與理論基礎……………………………………………………..11 2-1 奈米碳管之結構與特性………………………………………………...11 2-1-1單層奈米碳管之結構與電性…………………….……………...........11 2-1-2多層奈米碳管之結構與電性………….………………………...........12 2-1-3場發射特性………………………………………………….…...........13 2-1-4機械性質………………………………………………………............14 2-1-5熱性質……………………………………………………….…...........15 2-2奈米碳管之成長機制……..……………………………………………......25 2-3奈米碳管之合成方法………………………………………...………….....29 2-3-1非催化劑型奈米碳管之合成方法….…………………………...........29 2-3-1.1雷射剝蝕法……………..………………………………….....29 2-3-1.2高溫裂解法.……………………………………………….............29 2-3-1.3電化學法……………………………………………………............30 2-3-2催化劑型奈米碳管之合成方法….……………………………...........30 2-3-2-1催化劑之成長…...………….….……………….……….….........30 2-3-2-1.1直流式磁控濺鍍法...……………..………………….............30 2-3-2-1.2超高真空離子束濺鍍法…..…………………………..............36 2-3-2-1.3分子束磊晶法…………………………..……………..............37 2-3-2-2奈米碳管之合成……………………………………………............38 2-3-2-2.1電弧放電法…………………………..…………….......38 2-3-2-2.2化學氣相沉積法………………….…………………….............38 2-3-2-2.3電漿輔助化學氣相沉積法………….…………...................40 2-4奈米碳線………………………………………………………......…..……53 第三章 實驗方法與步驟………………………………………………………....54 3-1 實驗流程……………………………………………………………...…....54 3-1-1 鈷薄膜及奈米顆粒之結構與性質探討…………………….............54 3-1-2以鈷為催化劑成長奈米碳管之結構與性質探討…………..............55 3-2 實驗材料與前處理…………………………………….………....…......58 3-2-1製備催化劑之材料與前處理………………………………..............58 3-2-2 製備奈米碳管之材料…………………………...…...……...........61 3-3 實驗設備……………………………………………………………...…....61 3-3-1製備催化劑(鈷薄膜與奈米顆粒)之成長系統…………..……..........61 3-3-2製備一維奈米碳材之成長系統…………………………...…...........67 3-4 試片分析之準備……………………………...…………………….….....69 3-4-1 一般試片之準備…………………………………...……...…........69 3-4-2 TEM試片之準備…………………………………………...............69 3-5 分析設備……………………………………………………………..….....70 3-4-1 薄膜厚度分析--橢圓儀……………………….………….…...........70 3-4-2 薄膜電性分析--四點探針儀……………………………...…..........71 3-4-3 原子力顯微鏡(AFM)-薄膜表面型態與粗糙度分析……..............72 3-4-4 掃瞄式電子顯微鏡(SEM)-薄膜表面型態分析…………..............73 3-4-5 穿透式電子顯微鏡(TEM)-薄膜微結構分析……….….............…74 3-4-6 拉曼光譜儀(Raman spectroscopy)-化學鍵結分析………...........76 第四章 結果與討論………………………………………………………....78 4-1 一維奈米碳材之成長……………………………………..…….…..…....83 4-1-1催化劑結晶性、結構型態對奈米碳材成長之影響……………..........83 4-1-1.1直流式磁控濺鍍法成長Co薄膜及奈米顆粒(DCS-Co)…..............83 4-1-1.2 DCS-Co為催化劑成長一維奈米碳材……….……...……...........83 4-1-2 催化劑基板材質與方向性對奈米碳材成長之影響…………...........89 4-1-2.1 分子束磊晶法成長Co薄膜(MBE-Co)…………………...............89 4-1-2.2 MBE-Co為催化劑成長一維奈米碳材………..……...…...........89 4-1-3 催化劑膜厚、氫氣蝕刻條件對奈米碳材成長之影響………...........90 4-1-3.1 超高真空離子束濺鍍法成長Co薄膜及奈米顆粒(IBS-Co) ……………………………………………………………………….............90 4-1-3.2 IBS-Co為催化劑成長一維奈米碳材……….………..…............94 4-2 一維奈米碳材之TEM影像與繞射圖模擬.………………………........…137 第五章 結論…………………………………………………….……………..…152 參考文獻…………………………………………………………….…….…....155

    [1]S.Iijima,Nature(London)354(1991),56.
    [2]Thomas W. Ebbesen, Carbon Nanotubes: Preparation and Properties, (1997), P115
    [3]M.Monthlioux, B. W. Smith, B. Burteaux, A. Claye, J. E. Fischer, and D. E. Luzzi, Carbon 39(2001),1251.
    [4]S Iijiam and T Ichihashi, Nature 363(1993),603.
    [5]D. S. Bethune, C. H. Kiang, M. S. DeVries, G. Gorman, R. Savoy and R. Beyers, Nature 363(1993), 605.
    [6]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273(1996), 483.
    [7]N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature 408(2000), 50.,50.
    [8]P. Collins and P. Avouris, Scientific American, Dec. 2000, 38.
    [9]T. W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
    [10]B. I. Yakobson and R. E. Smalley, American Scientist, 85(1997), 324
    [11] M. S. Dresselhaus G. Dresselhaus, and R. Saito, Carbon 33(1995),883.
    [12]M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
    [13]N. Hamada, S. Sawada, and A. Oshiyama, Physical Review Letters, 68(1992), 1579.
    [14]O. Zhou, R. M. Fleming, D. W. Murphy, C. H. chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, Science, 263(1994), 1744.
    [15]S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuty, Science, 267(1995), 1334.
    [16]H. Dai, E. W. Wong, and C. M. Lieber, Science, 272(1996), 523.
    [17]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382(1996), 54.
    [18]W. Primak and L. H. Fuchs, Phys. Review, 95(1954), 22.
    [19]W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270(1995), 1179.
    [20]O. Groning, O. M. Kuttel, Ch. Emmenegger, P. Groning, and L. Schlapbach, J. Vac, Sci, Tehcnol. B, 18(2000), 665.
    [21]M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo, and G. A. J. Amaratunga, Applied Physics Letters, 79(2001), 2079.
    [22]A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Applied Physics Letters, 79(2000), 3813.
    [23]J. M. King, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related Materials, 9(2000),1184.
    [24]H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Applied Phyaics Letters, 76(2000), 1776.
    [25]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Part, and J. M. Kim, Applied Physics Letters, 75(1999), 3129.
    [26]J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature, 391(1998), 59.
    [27]A. van Oostrom, J. Appl. Phys., 33(1962), 2917.
    [28]B. I. Yakobson, in Fullerenes-Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, R. S. Ruoffand K. M. Kadish, Eds. (Electrochemical Society, Pennington, NJ, 1997), vol. 5(97-42), pp. 549-560.
    [29]M. P. Campbell, C. J. Brabec, J. Bernholc, Comput. Mater. Sci. 8(1997),341.
    [30]B. T. Kelly, Physics of Graphite(Applied Science, London, 1981).
    [31]B. I. Yakobson, Appl. Phys. Lett. 72(1998), 918.
    [32]P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 81(1998), 5346.
    [33]M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc, Phys. Rev. B, 57(1998), R4277.
    [34]M. Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett. 81(1998), 4657.
    [35]P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 383(1999), 1513.
    [36]J. Cumings and A. Zettl, Science, 289(1000), 602.
    [37]M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Topics in Current Chemistry, 199(1998), 1.
    [38]R. S. Ruoff and D. C. Lorents, Carbon, 33(1995), 925.
    [39]S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84(2000), 4613.
    [40]J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B, 59(1999), R2514.
    [41]J. Hone, M. C. Llaguno, N. M. Nemes, A. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, Appl. Phys. Lett. 77(2000), 666.
    [42]W. Yi, L. Lu, D-L Zhang, Z. W. Pan, and S. S. Xie, Phys Rev. B, 59(1999), R9015.
    [43]M. A. Osman and D. Srivastava, Nanotechnology, 12(20001), 21.
    [44]M. J. Biercuk, M. C. Llaguno, Mo Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer: in press.
    [45]J. Hone, M. C. Llagune, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, and J. E. Fischer, Appl. Phys. A, 74(2002), 339.
    [46]M. Endo and H. W. Kroto, Journal of Physical Chemistry, 96(1992),6941.
    [47]Y. Saito., T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, Chemical Physics Letters, 304(1999), 277.
    [48]R. T. K. Baker and P. S. Harries, Chemistry and Physics of Carbon, Marcel Dekker, New York(1978),83.
    [49]R. T. K. Baker, M. A. Braber, P. S. Harries, F. S. Feates, and R. J. Waite, Journal of Catalysis, 26(1972),51.
    [50]R. T. K. Baker and J. J. Chludzinski, Journal of Catalysis, 64(1980),464.
    [51]A. Oberlin, M. Endo, and T. Koyama, Carbon, 14(1976), 133.
    [52]A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth, 32(1976), 335.
    [53]T. Baird, J. R. Fryer, and B. Giant, Carbon, 12(1974), 591.
    [54]Y. J. Yoon and H. K. Baik, Diamond and Related Materials, 10(2001), 1214.
    [55]T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem., 99(1995), 10694.
    [56]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseia, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273(1996), 483.
    [57]M. Endo, K.Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi and H. W. Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNT’s)”, J. Phys. Chem. Solids, 54(1993), 1841.
    [58]A. Sarkar, H. W. Kroto and M. Endo, “Hemi-toroidal networks in pyrolytic carbon nanotubes”, Carbon, 33(1995), 51.
    [59]M. Endo, K.Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto and A. Sarkar, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers”, Carbon, 33(1995), 873.
    [60]W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton and P. J. F. Harris, “Condensed phase nanotubes”, Nature,377(1995), 687.
    [61]W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto and D. R. M. Walton, “Electrolytic formation of carbon nanostructures”, Chem. Phys. Lett., 262(1996), 161.
    [62]許華偉, 碳化鈦及氮化鈦薄膜在Si(100)基板之磊晶成長
    國立清華大學材料科學與工程學系, 博士論文(1998).
    [63]王起明, 氮化鈦薄膜濺鍍之研究
    國立清華大學材料科學與工程學系, 碩士論文(1996).
    [64]A. M. Howwastson, Pergamon Press,An Introduction to Gas Discharge (1976)Chapter. 4, 84.
    [65]B. Chapman, John Willwy & Son, Inc. N. Y.,Glow Discharge Processes(1980)Chapter. 6, 178.
    [66]陳松德, 濺鍍鉭基薄膜的相轉變機制與在銅金屬化處理之擴散阻障層性質研究, 逢甲大學材料科學研究所, 碩士論文(1999).
    [67]張惠貞, Fe-Cr-Co薄膜之磁特性研究, 國立成功大學材料科學及工程研究所碩士論文, 1994
    [68]倪澤恩, 李清庭, 分子束磊晶成長系統簡介, 真空科技, 七卷三、四期
    [69]S. Iijima and T. Ichihashi, Nature, 363(1993), 603.
    [70]T. W. Ebbesen, H. Hiura, J. Jujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 209(1993), 603.
    [71]S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, and R. Loufty, Carbon 31(1993), 685.
    [72]P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. de la Chapelle, S. Lefrant, R. Lee, and J. E. Fischer, Carbon, 36(1998), 675.
    [73]S. Subramoney, R. S. Ruoff, D.C. Lorents and R. Malhotra, Nature, 366(1993), 637.
    [74]S. Zhou, S. Seraphin, and S. Wang, Applied Physics letters, 65(1994), 1593.
    [75]Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Chemical Physics letters, 236(1995), 419.
    [76]Y. Saito, M. Okuda, N. Fujmoto, T. Yoshikawa, M. Tomita, and T. Hayashi, Jpn. J. Appl. Phy., 33(1994), L-526.
    [77]M. Jung, K. Y. Eun, J. K, Lee, Y. J. Baik, K. R. Lee, and J. w. Park, Diamond and Related Materials, 10(2001), 1235.
    [78]S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, Materials Science and Engineering A, 286(2000), 11.
    [79]X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, Z. Z. Chen, Thin Solid Films, 339(1999), 6.
    [80]C. J. Lee, J. Park, S. Y. Kang, J. H. Lee, Chemical Physics Letters, 323(2000), 554.
    [81]C. J. Lee, J. H. Park, J. Park, Chemical Physics Letters, 323(2000), 560.
    [82]N. Grobert et al., Applied Physics A, 70(2000), 175.
    [83]M. Terrones et al., Nature, 38(1997), 52.
    [84]M. Terrones et al., Chemical Physics Lettes, 285(1998), 299.
    [85]N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, ct37(1997), 295.
    [86]Q. Liang, Q. Li, D. L. Chen, D. R. Zhou, B. L. Zhang, Z. L. Yu, Chemical Journal of Chineses Universities-Chineses, 21(2000), 623.
    [87]N. M. Rodriguez, M. S. Kim, F. Tortin, I. Mochida, R. T. K. Baker, Applied Catalyst A, 148(1997), 265.
    [88]C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, K. S. No, Chemical Physics Letters, 327(2000), 277.
    [89]K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi, Applied Catalysis A, 199(2000), 277.
    [90]W . Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science, 274(1996), 1701.
    [91]Z. W Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, Chemical Physics Letters, 299(1999), 97.
    [92]A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys.,84(1998), 6023.
    [93]H. Masuda, H. Yamada, M. Satoh, and H. Asoh, Appl. Phys. Lett., 71(1997), 2770.
    [94]H. Masuda and M. Satoh, Jpn. J. Appl. Phys., Part 2, 35(1996), L126.
    [95]J. Li, C. Papadopoulos, M. Zu, and M. Moskovits, Applied Physics Letters, 75(1999), 367.
    [96]J. Li, C. Papadopoulos, J. Xu, Nature, 402(1999), 253.
    [97]A. W. H. Mau, L. Dai, Journal of American Chemical Society, 121(1999), 10832.
    [98]S. Huang, L. Dai, A. W. H. Mau, Journal of Physical Chemistry B, 103(1999),4223.
    [99]D.R. Lide, H. P. R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
    [100]P.E. Nolan, M. J. Schabel, D. C. Lynch, Carbon, 33(1995), 79.
    [101]P. Pinheiro, M. C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhee, Carbon, 38(2000), 1469.
    [102]A. A. Khassin, T. M. Yurieva, V. I. Zaikovskii, V. N. Parmon, Rreaction Kinectic and Catalysis Letters, 64(1998), 63.
    [103]徐逸明,化學氣相沉積法及電漿輔助化學氣沉積法於低溫合成奈米碳管之研究,國立成功大學化學工程研究所博士論文,2001.
    [104]寇崇善,微波電漿源之應用,九十年微波加熱與乾燥技術研討會.
    [105]Y. S. Woo, D. Y. Jeon, J. Y. Han, N. S. Lee, J. E. Jung, and J. M. Kim, Diamond and Related Materials, 11(2002), 59.
    [106]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science, 282(1998), 1105.
    [107]Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen, Applied Physics Letters, 79(2001), 680.
    [108]K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, J. Wyczisk, and D. Pribat, Applied Physics Letters, 79(2001), 1534.
    [109]H. Wang, J. Lin, C. H. A. Huang, P. Dong, J. He, S. H. Tang, W. K. Eng, and T. L. J. Thong, Applied Surface Science, 181(2001), 248.
    [110]M. Okai, T. Munehyoshi, T. Yaguchi, and S. Sasaki, Applied Physics Lettes, 77(2000), 3468.
    [111]C.Bower, O.Zhou, W.Zhu, D. J. Werder, and S. Jin, Applied Physics Letters, 77(2000), 2767.
    [112]Y. C. Choi, Y. M. Shin, Y. H. Lee, B. X. Lee, G. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Applied Physics Letters, 76(2000), 2367.
    [113]C. Bowr, W. Zhu, S. Jin, and O. Zhou, Applied Physics Leters, 77(2000), 803.
    [114]Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, and J. M. Kim, Synthesis Metals, 108(2000), 159.
    [115]Y. H. Tang, P. Zhang, P. S. Kim, T. K. Sham, Y. F. Hu, X. H. Sun, N. B. Wong, M. K. Fung, Y. F. Zheng, C. S. Lee, and S. T. Lee, Applied Physics Lettes, 79(2001), 3773.
    [116]H. Yokomichi, F. Sakai, M. Ichihara, and N. Kishimoto, Journal of Nor-crystalline Solids, 299-302(2002), 868.
    [117]S. Botti, R. Ciardi, M. L. Terranova, S. Piccirillo, V. Sessa, and M. Rossic, Chemical Physics Leters, 355(2002), 395.
    [118]R. L. Vander Wal, and L. J. Hall, Chemical Physics Letters, 349(2001), 178.
    [119]A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simposon, Chemical Physics Letters, 356(2002), 527.
    [120]J. Han, J. Yoo, C. Y. Park, H. Kim, G. S. Park, M. Yang, I. T. Han, N. Lee, W. Yi, S. G. Yu, and J. M. Kim, Applied Physics Letters, 91(2002), 483.
    [121] A.Ishizaka and Y. Shiraki, J. Electrochem. Soi. 133 (1986),666.
    [122]汪建民主編, 材料分析, 中國材料科學學會(1998).
    [123]D. B. Williams & C. B. Carter, Plenum, Transmission Electron Microscopy (1996)Chapter. 9, 131.
    [124]劉若梅, 一維奈米碳材合成與微結構之研究, 國立成功大學材料科學及工程研究所碩士論文, 2002
    [125]楊恆傑, 直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究, 國立成功大學材料科學及工程研究所碩士論文, 2002
    [126] Kristopher Matthews, Brett A. Cruden, Bin Chen, M. Meyyappan, and Lance Delzeit, J. Nanosci. Nanotech, vol.2, No.5, 2002, 475.
    [127]C. Rao et al., Applied Physics Letters, 77(2000), 2530

    下載圖示 校內:2004-07-09公開
    校外:2004-07-09公開
    QR CODE