| 研究生: |
陳建宏 Chen, Jian-Hong |
|---|---|
| 論文名稱: |
整合金屬微加熱器與單晶鑽石針尖之掃描熱探針 Scanning Thermal Probe with Integrated Metal Micro-Heater and Single Crystal Diamond Tip |
| 指導教授: |
劉浩志
Liu, Bernard Hao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 掃描熱探針 、金屬微加熱器 、單晶鑽石 、微機電系統製程 、載具式探針 |
| 外文關鍵詞: | Scanning thermal probe, Metal micro-heater, Single crystal diamond, MEMS, Vehicle probe |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在設計與製作新型掃描熱探針─載具式探針(Vehicle probe)。載具式探針由懸臂樑、金屬微加熱器及針頭所組成,針頭以夾取或黏附方式固定於懸臂樑。本實驗依其功能性選擇不同材料與設計,目標在於使各部件功能最佳化。
本實驗利用微機電系統製程製作單晶矽懸臂樑;金屬微加熱器利用lift-off製程製作,材料選擇有無電鍍鎳磷合金、電子束蒸鍍鋁及聚焦離子束沉積鎢;為改善一般熱探針空間解析度與熱解析度無法兼顧的情形,針頭材料選用單晶鑽石,單晶鑽石具有高熱傳導性與硬度,無論在量測或加熱加工應用上,都具有極佳的優勢。
對於製作成果進行分析,初鍍之無電鍍鎳磷鍍層並非為穩定相,其結構與電性會隨溫度改變,為使其在高溫下能穩定使用,需加入退火後處理製程。實驗發現,隨退火溫度上升,鎳磷合金會逐漸轉為fcc Ni及Ni3P兩種穩定相,而在400℃退火熱處理4小時之後,鎳磷鍍層能在200℃下保持穩定性。
整合金屬微加熱器之懸臂樑,經通電測試並透過高分子標定與紅外線量測,其結果顯示最高可到達溫度至少為300℃,且能保持穩定。最後,鑽石針頭成功地以黏附方式整合於懸臂樑,並獲得初步掃描成果。
The purpose of the project is to improve the design and fabrication of the novel “Vehicle probe” for scanning thermal microscope. The vehicle probe composes of a cantilever, a micro metal heater, and a tip base which is integrated into the cantilever by mechanical clamping or adhesive methods. In order to optimize each section of the probe, different materials were employed.
The cantilever is made of single crystal silicon and manufactured by MEMS process, while the resistive metal heater is made of either electroless nickel-phosphorus, E-beam evaporated Aluminum, or focus ion beam deposited tungsten, and defined via lift-off process. When using the thermal probe, users have to compromise between the resolution of topography and thermal image. Therefore, by virtues of its outstanding thermal conductivity and wear resistance against Si and any other materials, the single crystal diamond is the choicest tip material, as great potential lies not only in the field of thermal analysis but also in micro-thermal machining.
The analyses of my processed results show that as-deposited Ni-P is meta-stable. Its structure and electrical properties change according to the temperature. It is noted that the annealing process needs to be applied before the high temperature operations. This experiment results indicate that when the temperature is elevated, the deposits transformed into stable fcc Ni and Ni3P phases. Also, after four hours of annealing at 400℃, the Ni-P deposit will stabilize at below 200℃.
The cantilevers integrated with micro metal heater was heated, then calibrated by melting standard method and infrared thermometry. The maxima achievable and controllable temperature of the heater is to be at least 300℃. Finally, the diamond tip was successfully glued onto the cantilever and a preliminary scan result was obtained.
[1] K. Kim, W. Jeong, W. Lee, and P. Reddy, "Ultra-High Vacuum Scanning Thermal Microscopy for Nanometer Resolution Quantitative Thermometry," ACS Nano, vol. 6, pp. 4248-4257, 2012.
[2] P. Janus, D. Szmigiel, M. Weisheit, G. Wielgoszewski, Y. Ritz, P. Grabiec, M. Hecker, T. Gotszalk, P. Sulecki, and E. Zschech, "Novel SThM nanoprobe for thermal properties investigation of micro- and nanoelectronic devices," Microelectronic Engineering, vol. 87, pp. 1370-1374, 2010.
[3] S. Jesse, M. P. Nikiforov, L. T. Germinario, and S. V. Kalinin, "Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe," Applied Physics Letters, vol. 93, p. 073104, 2008.
[4] S. GH, R. CJ, D. A, M. AJ, P. DM, D. MC, T. SJ, and W. MJ, "Discrimination of polymorphic forms of a drug product by localized thermal analysis," Journal of Microscopy, vol. 198, pp. 77-81, 2000.
[5] U. Drechsler, N. Bürer, M. Despont, U. Dürig, B. Gotsmann, F. Robin, and P. Vettiger, "Cantilevers with nano-heaters for thermomechanical storage application," Microelectronic Engineering, vol. 67-68, pp. 397-404, 2003.
[6] P. E. Sheehan, L. J. Whitman, W. P. King, and B. A. Nelson, "Nanoscale deposition of solid inks via thermal dip pen nanolithography," Applied Physics Letters, vol. 85, p. 1589, 2004.
[7] W.-K. Lee, L. J. Whitman, J. Lee, W. P. King, and P. E. Sheehan, "The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography," Soft Matter, vol. 4, p. 1844, 2008.
[8] E. O. Sunden, T. L. Wright, J. Lee, W. P. King, and S. Graham, "Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever," Applied Physics Letters, vol. 88, p. 033107, 2006.
[9] http://www.ntmdt.com/press-releases/view/skaniruyushcaya-termalnaya-mikroskopiya-sterm.
[10] F.-Y. Liao, "The design and fabrication of a novel vehicle probe for scanning thermal microscopy," Master, Materials Science and Engineering, NCKU, 2011.
[11] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, "Surface Studies by Scanning Tunneling Microscopy," Physical Review Letters, vol. 49, pp. 57-61, 1982.
[12] G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, pp. 930-933, 1986.
[13] C. C. Williams and H. K. Wickramasinghe, "Scanning thermal profile," Applied Physics Letters, vol. 49, 1986.
[14] A. Majumdar, J. P. Carrejo, and J. Lai, "Thermal imaging using the atomic force microscope," Applied Physics Letters, vol. 62, p. 2501, 1993.
[15] R. J. Pylkki, P. J. Moyer, and P. E. West, "Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy," Japanese Journal of Applied Physics, vol. 33, pp. 3785-3790, 1994.
[16] B. Cretin, S. Gomès, N. Trannoy, and P. Vairac, "Scanning Thermal Microscopy
Microscale and Nanoscale Heat Transfer." vol. 107, S. Volz, Ed., ed: Springer Berlin / Heidelberg, 2007, pp. 181-238.
[17] D. W. Lee, T. Ono, and M. Esashi, "Fabrication of thermal microprobes with a sub-100 nm metal-to-metal junction," Nanotechnology, vol. 13, pp. 29-32, 2002.
[18] O. Nakabeppu, M. Chandrachood, Y. Wu, J. Lai, and A. Majumdar, "Scanning thermal imaging microscopy using composite cantilever probes," Applied Physics Letters, vol. 66, p. 694, 1995.
[19] D. Sarid, B. McCarthy, and R. Grover, "Scanning thermal-conductivity microscope," Review of Scientific Instruments, vol. 77, p. 023703, 2006.
[20] M. E. McConney, D. D. Kulkarni, H. Jiang, T. J. Bunning, and V. V. Tsukruk, "A new twist on scanning thermal microscopy," Nano Lett, vol. 12, pp. 1218-23, Mar 14 2012.
[21] T. Leinhos, M. Stopka, and E. Oesterschulze, "Micromachined fabrication of Si cantilevers with Schottky diodes integrated in the tip," Applied Physics A: Materials Science & Processing, vol. 66, pp. S65-S69, 1998.
[22] L. Aigouy, L. Lalouat, M. Mortier, P. Low, and C. Bergaud, "Note: A scanning thermal probe microscope that operates in liquids," Rev Sci Instrum, vol. 82, p. 036106, Mar 2011.
[23] J. H. Bae, T. Ono, and M. Esashi, "Boron-doped diamond scanning probe for thermo-mechanical nanolithography," Diamond and Related Materials, vol. 12, pp. 2128-2135, 2003.
[24] D. W. Lee, T. Ono, and M. Esashi, "Electrical and thermal recording techniques using a heater integrated microprobe," J. Micromech. Microeng., vol. 12, 2002.
[25] M.-H. Li, J. J. Wu, and Y. B. Gianchandani, "Surface micromachined polyimide scanning thermocouple probes," Journal of Microelectromechanical Systems, vol. 10, pp. 3-9, 2001.
[26] http://www.anasysinstruments.com/nano-TA2.pdf.
[27] J. Ye, M. Reading, N. Gotzen, and G. V. Assche. (2007, Scanning Thermal Probe Microscopy : Nano-Thermal Analysis with Raman Microscopy. S5-S8.
[28] D. Fletcher, "Thermal Microscopy with a Microfabricated Solid Immersion Lens," Microscale Thermophysical Engineering, vol. 7, pp. 267-273, 2003.
[29] B. A. Nelson and W. P. King, "Temperature calibration of heated silicon atomic force microscope cantilevers," Sensors and Actuators A: Physical, vol. 140, pp. 51-59, 2007.
[30] T. Beechem and S. Graham, "Temperature Measurement of Microdevices using Thermoreflectance and Raman ThermometryBioNanoFluidic MEMS," P. J. Hesketh, Ed., ed: Springer US, 2008, pp. 153-174.
[31] W. Haeberle, M. Pantea, and J. K. Hoerber, "Nanometer-scale heat-conductivity measurements on biological samples," Ultramicroscopy, vol. 106, pp. 678-86, Jun-Jul 2006.
[32] B. Gotsmann, M. A. Lantz, A. Knoll, and U. Dürig, "Nanoscale Thermal and Mechanical Interactions Studies using Heatable Probes," in Nanotechnology, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
[33] S.-J. Chang, "Design, Fabrication and Characterization of Micro Probes Integrated with Micro Heaters and Their Applications on Nano-machining " Mater, NCKU, 2004.
[34] K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, "Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air," ACS Nano, vol. 5, pp. 8700-8709, 2011.
[35] K. R.Williams, K. Gupta, and MatthewWasilik, "Etch Rates for Micromachining Processing—Part II," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 12, p. 761, 2003.
[36] C. Liu, Foundations of MEMS, 1 ed.: Pearson education, 2006.
[37] J. William D. Callister, Materials Science and Engineering An Intriduction, 6 ed.: John Wiley & Sons, Inc, 2003.
[38] K. Hari Krishnan, S. John, K. N. Srinivasan, J. Praveen, M. Ganesan, and P. M. Kavimani, "An Overall Aspect of Electroless Ni-P DepositionsA Review Article," Metallurgical and Materials Transactions A, vol. 37, pp. 1917-1926, 2006.
[39] R. Agarwala and V. Agarwala, "Electroless alloy/composite coatings: A review," Sadhana, vol. 28, pp. 475-493, 2003.
[40] Y.-D. Jeon and K.-W. Paik, "Stresses in Electroless Ni–P Films for Electronic Packaging Applications," TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, vol. 25, 2002.
[41] I. Zubel and M. Kramkowska, "Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions," Sensors and Actuators A: Physical, vol. 115, pp. 549-556, 2004.
[42] R. Ghodssi and P. Lin, MEMS Materials and Processes Handbook: Springer, 2011.
[43] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, 1 ed. New Jersey: Prentice Hall, 2000.
[44] (2012). http://www.microchemicals.eu/technical_information/TroubleShooter_EN.pdf.
[45] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions," Journal of The Electrochemical Society, vol. 137, 1990.
[46] E. Gogolides, "Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation," Microelectronic Engineering, vol. 73-74, pp. 312-318, 2004.
[47] K. G. KEONG, W. SHA, and S. MALINOV, "Crystallization and phase transformation behaviour of electroless nickel-phosphorus deposits with low and medium phosphorus contents under continuous heating," Journal of Materials Science, vol. 37, p. 4445, 2002.
[48] B. FARBER, E. CADEL, A. MENAND, G. SCHMITZ, and R. KIRCHHEIM, "Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP)," Acta Materialia, vol. 48, p. 789, 2000.
[49] G. Jiaqiang, W. Yating, L. Lei, S. Bin, and H. Wenbin, "Crystallization temperature of amorphous electroless nickel–phosphorus alloys," Materials Letters, vol. 59, pp. 1665-1669, 2005.
[50] K. G. Keong, W. Sha, and S. Malinov, "Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content," Journal of Alloys and Compounds, vol. 334, 2002.
[51] S.-S. Tzeng and F.-Y. Chang, "Electrical resistivity of electroless nickel coated carbon fibers," Thin Solid Films, vol. 388, p. 143, 2001.
[52] I. BARYCKA, B. HOEODNIK, and A. MISIUK, "Ni-P as a new material for thick film technology," ElectrocomponentScience and Technology, vol. 7, p. 221, 1981.
[53] E. G. Colgan, M. Maenpaa, M. Finetti, and M.-A. Nicolet, "Electrical characteristics of thin Ni2Si, NiSi, and NiSi2 layers grown on silicon," Journal o f Electronic Materials, vol. 12, p. 413, 1983.
[54] L. A. Clevenger, C. V. Thompson, R. C. Cammarata, and K. N. Tu, "Reaction kinetics of nickel/silicon multilayer films," Applied Physics Letters, vol. 52, p. 795, 1988.
[55] C. Boulord, A. Kaminski, B. Canut, S. Cardinal, and M. Lemiti, "Electrical and Structural Characterization of Electroless Nickel–Phosphorus Contacts for Silicon Solar Cell Metallization," Journal of The Electrochemical Society, vol. 157, p. H742, 2010.
[56] P. Chahal, R. R. Tummala, M. G. Allen, and G. E. White, "Electroless Ni-P/Ni-W-P thin-film resistors for MCM-L based technologies," Electronic Components and Technology Conference, 1998.
[57] S. T. Pai, "Annealing Effects on the Structure and Resistivity of Ni-P Films," Journal of Applied Physics, vol. 43, p. 282, 1972.
[58] J. DEARDEN, "ELECTROLESS PLATING ITS APPLICATIONS IN RESISTOR TECHNOLOGY," Electrocomponent Science and Technology, vol. 3, p. 103, 1976.
[59] S. V. S. TYAGI, S. K. BARTHWAL, and V. K. TONDON, "The annealing behaviour of electroless noncrystalline nickel phosphorus films," Thin Solid Films, vol. 169, p. 229, 1989.
[60] M. Fernández, J. M. Martínez-Duart, and J. M. Albella, "Electrical properties of electroless NiP thin films," Electrochimica Acta, vol. 31, pp. 55-57, 1986.
[61] M. V. Sullivan and J. H. Eigler, "Electroless Nickel Plating for Making Ohmic Contacts to Silicon," Journal of The Electrochemical Society, vol. 104, p. 226, 1957.
[62] Z. Zhang, P.-E. Hellström, M. Östling, S.-L. Zhang, and J. Lu, "Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12," Applied Physics Letters, vol. 88, p. 043104, 2006.
[63] http://www.web-books.com/eLibrary/ON/B1/B1395/115MB1395.html.
校內:2017-08-31公開